Gene loss and gain in the evolution of the vertebrates

Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 155-161
Author(s):  
Frank H. Ruddle ◽  
Kevin L. Bentley ◽  
Michael T. Murtha ◽  
Neil Risch

Homeobox cluster genes (Hox genes) are highly conserved and can be usefully employed to study phyletic relationships and the process of evolution itself. A phylogenetic survey of Hox genes shows an increase in gene number in some more recently evolved forms, particularly in vertebrates. The gene increase has occurred through a two-step process involving first, gene expansion to form a cluster, and second, cluster duplication to form multiple clusters. We also describe data that suggests that non-Hox genes may be preferrentially associated with the Hox clusters and raise the possibility that this association may have an adaptive biological function. Hox gene loss may also play a role in evolution. Hox gene loss is well substantiated in the vertebrates, and we identify additional possible instances of gene loss in the echinoderms and urochordates based on PCR surveys. We point out the possible adaptive role of gene loss in evolution, and urge the extension of gene mapping studies to relevant species as a means of its substantiation.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3921-3921
Author(s):  
Katerina Rejlova ◽  
Alena Musilova ◽  
Martina Slamova ◽  
Karel Fiser ◽  
Karolina Skvarova Kramarzova ◽  
...  

Abstract Homeobox genes (HOX) encode transcription factors that are frequently deregulated in leukemias. Our previous results showed that HOX gene expression differs among genetically characterized subtypes of pediatric acute myeloid leukemia (AML). Specifically, PML-RARa positive AML patients have overall lowest HOX gene expression which positively correlates with expression of histone 3 lysine 27 (H3K27) demethylases - JMJD3 and UTX and negatively with the expression of DNA methyltransferases - DNMT3a and DNMT3b. Interestingly, JMJD3 was already shown to be a direct target of PML-RARa protein (Martens, JH et al, 2010, Cancer Cell). From these findings we postulated a hypothesis that reduced levels of HOX genes in PML-RARa positive AML are a consequence of suppressed expression of histone demethylases resulting in increased H3K27 methylation and/or of elevated levels of DNMTs leading to de novoDNA methylation. We studied the role of histone demethylases and DNMTs in the regulation of HOX gene expression and the effect of treatment in PML-RARa positive cell lines (NB4 and ATRA-resistant clones NB4-LR2 and NB4-MR2). We treated NB4 cell line by all-trans retinoic acid (ATRA; 1uM), which was described to release the differentiation block caused by the presence of PML-RARa and to degrade the fusion protein. We observed that expression of particular HOX genes (HOXA1, HOXA3, HOXA4, HOXA5, HOXA7, HOXB4, HOXB6) measured by qPCR was significantly increased after ATRA treatment. While the level of JMJD3 was significantly increased upon ATRA treatment as well, the expression of UTX did not change. Furthermore, we detected significantly reduced expression of DNMT3b gene. To exclude a non-specific effect of ATRA, independent of PML-RARa, we used resistant clones LR2 and MR2 bearing mutations in retinoic acid-binding domain. HOX gene expression together with JMJD3, UTX and DNMT3b expression did not change upon ATRA treatment. These results confirm the PML-RARa-dependent regulation of HOX genes. To test the role of JMJD3 in the HOX gene expression regulation, we cultured NB4 cells with a specific inhibitor of histone demethylases, GSK-J4 (1 uM, 10 uM), in the presence of ATRA. The co-treatment caused significant decrease in the expression of studied HOX genes (HOXA1, HOXA3, HOXA5, HOXA7, HOXA10, HOXB4, HOXB6) in comparison to ATRA alone which supports the role of JMJD3 in the transcription regulation. Further, we performed chromatin immunoprecipitation (ChIP) to investigate if the changes of HOX gene expression upon ATRA and GSK-J4 treatment would correspond with changes of histone code on HOX gene promoter regions. ATRA treatment caused reduction of repressive histone mark (H3K27me3) on particular HOX gene promoters (HOXA1, HOXA3, HOXA5, HOXA7), by contrast, combinational treatment of ATRA and GSK-J4 reversed this effect. Accordingly, we detected that ATRA/GSK-J4 co-treatment reduced active histone mark H3K4me2. Next we were interested if JMJD3 inhibition would interfere with the differentiation effect of ATRA. As shown previously, ATRA treatment alone caused differentiation of NB4 cell line whereas the combination with GSK-J4 did not reduce the effect. Interestingly, in addition to differentiation it led cells to apoptosis. Combination of drugs (ATRA - 1uM, GSK-J4 - 1, 2, 5uM) increased significantly the percentage of dead cells in comparison to ATRA or GSK treatment alone (GSK-J4 alone vs in combination with ATRA, 1uM - 1.8 fold, 2uM - 2.2 fold, 5 uM - 2.3 fold increase). Next we measured apoptosis in resistant clones LR2 and MR2. In both cases the highest concentration used of GSK-J4 (5uM) in combination with ATRA caused significant increase of dead cells as well (LR2 - 2.1 fold, MR2 - 2.0 fold increase). Our results indicate that JMJD3 is responsible for the regulation of HOX gene expression in PML-RARa positive leukemia since changes of HOX gene expression correspond with histone modifications on the regions of HOX gene promoters. We assume that DNA methylation driven by DNMT3b can also participate in this process. Moreover, our findings demonstrate potential therapeutic implications of GSK-J4 inhibitor in combination with ATRA in patients with acute promyelocytic leukemia who are not responsive to ATRA monotherapy. Supported by P304/12/2214 and GAUK 196616 Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 12 (6) ◽  
pp. 948-964
Author(s):  
Melissa B DeBiasse ◽  
William N Colgan ◽  
Lincoln Harris ◽  
Bradley Davidson ◽  
Joseph F Ryan

Abstract Tunicates, the closest living relatives of vertebrates, have served as a foundational model of early embryonic development for decades. Comparative studies of tunicate phylogeny and genome evolution provide a critical framework for analyzing chordate diversification and the emergence of vertebrates. Toward this goal, we sequenced the genome of Corella inflata (Ascidiacea, Phlebobranchia), so named for the capacity to brood self-fertilized embryos in a modified, “inflated” atrial chamber. Combining the new genome sequence for Co. inflata with publicly available tunicate data, we estimated a tunicate species phylogeny, reconstructed the ancestral Hox gene cluster at important nodes in the tunicate tree, and compared patterns of gene loss between Co. inflata and Ciona robusta, the prevailing tunicate model species. Our maximum-likelihood and Bayesian trees estimated from a concatenated 210-gene matrix were largely concordant and showed that Aplousobranchia was nested within a paraphyletic Phlebobranchia. We demonstrated that this relationship is not an artifact due to compositional heterogeneity, as had been suggested by previous studies. In addition, within Thaliacea, we recovered Doliolida as sister to the clade containing Salpida and Pyrosomatida. The Co. inflata genome provides increased resolution of the ancestral Hox clusters of key tunicate nodes, therefore expanding our understanding of the evolution of this cluster and its potential impact on tunicate morphological diversity. Our analyses of other gene families revealed that several cardiovascular associated genes (e.g., BMP10, SCL2A12, and PDE2a) absent from Ci. robusta, are present in Co. inflata. Taken together, our results help clarify tunicate relationships and the genomic content of key ancestral nodes within this phylogeny, providing critical insights into tunicate evolution.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 876-876
Author(s):  
Katerina Rejlova ◽  
Karolina Kramarzova ◽  
Meritxell Alberich-Jorda ◽  
Karel Fiser ◽  
Marketa Zaliova ◽  
...  

Abstract Homeobox genes (HOX) encode transcription factors that are frequently deregulated in leukemias. Our previous findings described that HOX gene expression differs among genetically characterized subtypes of pediatric AML with PML-RARa+ patients having the lowest overall HOX gene expression. We observed that HOX gene expression positively correlated with expression of histone 3 lysine 27 (H3K27) demethylases JMJD3 and UTX and negatively with DNA methyltransferase DNMT3b. Interestingly, it has been shown that JMJD3 is a direct target of PML-RARa protein (Martens, JH et al, 2010, Cancer Cell). These findings led us to postulate the hypothesis that reduced levels of HOX genes in PML-RARa+ AML can be caused by the suppressed expression of histone demethylases, such as JMJD3 and UTX, resulting in increased H3K27 methylation and transcription inhibition. We chose PML-RARa+ NB4 cell line to study the role of PML-RARa fusion gene in the regulation of HOX gene expression. To inhibit the effect of PML-RARa we used all-trans retinoic acid (ATRA; 1 uM, 10 uM) which was described to release the block caused by this fusion protein. Expression of particular HOX genes (e.g., HOXA1, HOXA3, HOXA5, HOXA7) together with that of JMJD3 and UTX assessed by qPCR was significantly elevated after ATRA treatment, while gene expression of DNMT3b was decreased. To test whether the reduction in HOX gene expression is directly related to the levels of JMJD3 and UTX, we cultured NB4 cells with a specific inhibitor of these histone demethylases, GSK-J4 (1 uM, 10 uM), in combination with ATRA. This co-treatment led to inhibition of JMJD3 and UTX proteins, followed by significant reduction of HOX genes expression (e.g., HOXA1, HOXA3, HOXA5, HOXA7). This result supports our hypothesis that HOX genes expression is directly related to JMJD3/UTX activity. To determine the effect of ATRA and GSK-J4 on histone marks we have isolated histones by acid extraction and detected the levels of histones by western blot in NB4 ATRA or GSK-J4/ATRA treated cells. We observed that the level of repressive histone methylation mark (trimethylated H3K27; H3K27me3) was decreased after ATRA treatment (activation of JMJD3/UTX) and increased after GSK-J4/ATRA co-treatment (inhibition of JMJD3/UTX). The opposite effect was observed in active histone methylation marks where di- and tri-methylated H3K4 (H3K4me2, H3K4me3) increased after ATRA treatment and decreased after GSK-J4/ATRA co-treatment. H3K9 dimethylated (another repressive histone methylation mark) levels did not change. Next, to investigate the histone code directly in particular HOX genes regions we performed chromatin immunoprecipitation (ChIP) assays. We studied the presence of H3K27me3 and H3K4me2 in 5´UTR genomic region of particular HOX genes (HOXA1, HOXA2, HOXA3, HOXA5, HOXA7) in cells treated with ATRA alone or in the combination with GSK-J4. Preliminary results showed reduction in repressive marks (H3K27me3) upon ATRA treatment, whereas addition of GSK-J4 prevented this decrease. Accordingly, we observed that ATRA/GSK-J4 co-treatment reduced active histone mark H3K4me2. To evaluate the role of DNA methylation in observed expression changes after ATRA treatment we performed bisulfite sequencing of particular promoter sites of HOX genes (e.g., HOXA7, HOXA5). Although we detected decreased DNMT3b gene expression after ATRA treatment there was no change in DNA methylation of CpGs in studied regions. Our results demonstrate that changes in chromatin activity correspond with changes in HOX gene expression. Moreover, ChIP data show direct binding of the modified histones and HOX 5´UTR sites. Our data implicate histone demethylases in regulation of HOX gene expression in PML-RARa+ leukemic blasts. DNA methylation in these particular HOX genes is not involved in the regulation. Elucidating the mechanism of regulation of HOX genes expression can help to understand their role in the leukemogenic process. Supported by GACR P304/12/2214 and GAUK 568213. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Spyros Papageorgiou

Hox gene collinearity (HGC) is a multiscalar property of many animal phyla particularly important in embryogenesis. It relates entities and events occurring in Hox clusters inside the chromosome DNA and in embryonic tissues. These two entities differ in linear size by more than four orders of magnitude. HGC is observed as spatial collinearity (SC) where the Hox genes are located in the order (Hox1, Hox2, Hox3 …) along the 3’ to 5’ direction of DNA in the genome and a corresponding sequence of ontogenetic units (E1, E2, E3, …) located along the Anterior – Posterior axis of the embyo. Expression of Hox1 occurs in E1. Hox2 in E2, Hox3 in E3… Besides SC, a temporal collinearity (TC) has been also observed in many vertebrates. According to TC first is Hox1 expressed in E1, later is Hox2 expressed in E2, followed by Hox3 in E3,… Lately doubt has been raised whether TC really exists. A biophysical model (BM) was formulated and tested during the last twenty years. According to BM, physical forces are created which pull the Hox genes one after the other driving them to a transcription factory domain where they are transcribed. The existing experiments support this BM description. Symmetry is a physical-mathematical property of Matter that was explored in depth by Noether who formulated a ground-breaking theory that applies to all sizes of Matter. This theory applied to Biology can explain the origin of HGC as applied not only to animals developing along the A/P axis but also to animals with circular symmetry.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2641-2641
Author(s):  
Gordon R. Strathdee ◽  
Tessa L. Holyoake ◽  
Alyson Sim ◽  
Anton Parker ◽  
David G. Oscier ◽  
...  

Abstract The role of the HOX gene family in leukemia development has been extensively studied. However, these studies have focused almost exclusively on the potential oncogenic role of HOX gene family members. In contrast to the oncogenic function often attributed to HOX genes, our studies have identified several HOX gene family members as candidate tumor suppressor genes and shown that inactivation of HOX genes, particularly HOXA4, is associated with poor prognosis. We have used multiple quantitative methylation assays to search for epigenetic inactivation of HOX genes in adult and childhood leukemia. In both adult myeloid and lymphoid leukemia two members of the HOXA cluster (HOXA4 and A5) were found to be frequently inactivated by promoter hypermethylation (26–64% of cases were hypermethylated). In contrast, a further 12 HOXA, B and C cluster genes were found to be essentially devoid of hypermethylation (except HOXA6 in CLL, where 34% of samples exhibited hypermethylation). HOXA4 and HOXA5 were also frequently inactivated in childhood ALL and AML (39–79% of samples). However, in contrast to the adult leukemias, all but one of the additional HOX genes analyzed were also found to be targets for hypermethylation in both ALL and AML (4–26% of samples), suggesting that HOX genes are differentially regulated in childhood versus adult leukemia. Hypermethylation of HOX genes (HOXA4, HOXA5 and HOXA6) was associated with loss of expression of the corresponding gene. Expression analysis also suggests that interaction between different HOX genes may be crucial. In normal karyotype AML samples, those expressing of high levels of HOXA9, but not those with low HOXA9 expression, were associated with invariable HOXA4 hypermethylation (p=0.01). Interestingly HOXA4 hypermethylation also correlates with poor prognosis in all types of leukemia tested. Hypermethylation of HOXA4 correlates with progression to blast crisis (p=0.007) and poor response to imatinib in CML (p=0.04), with cytogenetic status in AML (33%, 72% and 100% in good, intermediate and poor prognostic groups respectively, p=0.0004) and with IgVh mutational status (p=0.003) and poor survival in CLL (median survival 159 versus 199 months in hypermethylated and non hypermethylated patients, respectively). Furthermore transfection of a HOXA4 expressing construct into a CML blast crisis cell line results in re-expression of markers of myeloid differentiation, suggesting that loss of HOXA4 is functionally relevant in leukemic cells. These results indicate that aberrant epigenetic regulation of HOXA4, and indeed other frequently inactivated HOX genes such as HOXA5 and HOXA6, may play a key role in the development of multiple types of leukemia. Thus co-ordinated up and down regulation of expression of HOX gene family members may be crucial in the leukemogenic process.


J ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 151-161
Author(s):  
Spyros Papageorgiou

Hox Gene Collinearity (HGC) is a fundamental property that controls the development of many animal species, including vertebrates. In the Hox gene clusters, the genes are located in a sequential order Hox1, Hox2, Hox3, etc., along the 3’ to 5’ direction of the cluster in the chromosome. During Hox cluster activation, the Hox genes are expressed sequentially in the ontogenetic units D1, D2, D3, etc., along the anterior–posterior axis (A-P) of the early embryo. This collinearity, first observed by E.B. Lewis, is surprising because the spatial collinearity of these structures (Hox clusters and embryos) correlates entities that differ by about four orders of magnitude. Biomolecular mechanisms alone cannot explain such correlations. Long-range physical interactions, such as diffusion or electric attractions, should be involved. A biophysical model (BM) was formulated, which, in alignment with the biomolecular processes, successfully describes the existing vertebrate genetic engineering data. One hundred years ago, Emmy Noether made a fundamental discovery in mathematics and physics. She proved, rigorously, that a physical system obeying a symmetry law (e.g., rotations or self-similarity) is followed by a conserved physical quantity. It is argued here that HGC obeys a ‘primitive’ self-similarity symmetry. In this case, the associated primitive conserved quantity is the irreversibly increasing ‘ratchet’-like Hoxgene ordering where some genes may be missing. The genes of a vertebrate Hox clusterare located along a finite straight line. The same order follows the ontogenetic unitsof the vertebrate embryo. Therefore, HGC is a manifestation of a primitive Noether Theory (NT). NT may be applied to other than the vertebrate case, for instance, to animals with a circular topological symmetry. For example, the observed abnormal Hox gene ordering of the echinoderm Hox clusters may be reproduced by a double-strand break of the circular Hox gene ordering and its subsequent incorporation in the flanking chromosome.


2010 ◽  
Vol 10 ◽  
pp. 2207-2214 ◽  
Author(s):  
A. J. Durston ◽  
H. J. Jansen ◽  
S. A. Wacker

We review a recently discovered developmental mechanism. Anterior-posterior positional information for the vertebrate trunk is generated by sequential interactions between a timer in the early nonorganizer mesoderm (NOM) and the Spemann organizer (SO). The timer is characterized by temporally collinear activation of a series of Hox genes in the early ventral and lateral mesoderm (i.e., the NOM) of the Xenopus gastrula. This early Hox gene expression is transient, unless it is stabilized by signals from the SO. The NOM and the SO undergo timed interactions due to morphogenetic movements during gastrulation, which lead to the formation of an anterior-posterior axial pattern and stable Hox gene expression. When separated from each other, neither the NOM nor the SO is able to induce anterior-posterior pattern formation of the trunk. We present a model describing that the NOM acquires transiently stable hox codes and spatial collinearity, and that morphogenetic movements then continually bring new cells from the NOM within the range of SO signals that cause transfer of the mesodermal pattern to a stable pattern in neurectoderm and, thereby, create patterned axial structures. In doing so, the age of the NOM, but not the age of the SO, defines positional values along the anterior-posterior axis. We postulate that the temporal information from the NOM is linked to mesodermal Hox expression. The role of the SO for trunk patterning turns out to be the induction of neural tissue as prerequisite for neural hox patterning. Apparently, development of a stable anterior-posterior pattern requires neural hox patterning. We believe that this mechanism represents a developmental principle.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1018
Author(s):  
Spyros Papageorgiou

In 1999 T. Kondo and D. Duboule performed excisions of posterior upstream DNA domains in mouse embryos and they observed that for an extended excision (including Evx gene) the Hox genes of the cluster were simultaneously expressed with the first Hoxd1 gene ‘as if’ Temporal Collinearity (TC) had disappeared. According to a Biophysical Model (BM) during Hox gene expression, Hox clusters behave similar toexpanding elastic springs. For the extended upstream DNA excision, BM predicts the TC disappearance and an experiment is proposed to test this BM prediction. In the chick limb bud C. Tickle et al. observed that the excision of the apical ectodermal ridge (AER) caused the inhibition of HoxA13 expression. However, the implantation of FGF soaked beads at the tip of the limb could surprisingly rescue HoxA13 expression after 24 hours so that TC is restored.Brachyury transcription factor (TF) is essential in identifying the targets of this transcription and a chromatin immunoprecipitation microarray chip (ChIP-chip) was produced which can be inserted in the mouse embryonic cells. It is here proposed to insert this chip in the mutant cells where TC has disappeared and compare it to the limb bud case.Is TC restored? It is an important issue worth exploring.


Development ◽  
1994 ◽  
Vol 1994 (Supplement) ◽  
pp. 209-215
Author(s):  
Michael Akam ◽  
Michalis Averof ◽  
James Castelli-Gair ◽  
Rachel Dawes ◽  
Francesco Falciani ◽  
...  

Comparisons between Hox genes in different arthropods suggest that the diversity of Antennapedia-class homeotic genes present in modern insects had already arisen before the divergence of insects and crustaceans, probably during the Cambrian. Hox gene duplications are therefore unlikely to have occurred concomitantly with trunk segment diversification in the lineage leading to insects. Available data suggest that domains of homeotic gene expression are also generally conserved among insects, but changes in Hox gene regulation may have played a significant role in segment diversification. Differences that have been documented alter specific aspects of Hox gene regulation within segments and correlate with alterations in segment morphology rather than overt homeotic transformations. The Drosophila Hox cluster contains several homeobox genes that are not homeotic genes – bicoid, fushi-tarazu and zen. The role of these genes during early development has been studied in some detail. It appears to be without parallel among the vertebrate Hox genes. No well conserved homologues of these genes have been found in other taxa, suggesting that they are evolving faster than the homeotic genes. Relatively divergent Antp-class genes isolated from other insects are probably homologues of fushi-tarazu, but these are almost unrecognisable outside of their homeodomains, and have accumulated approximately 10 times as many changes in their homeodomains as have homeotic genes in the same comparisons. They show conserved patterns of expression in the nervous system, but not during early development.


Sign in / Sign up

Export Citation Format

Share Document