The role of the cell surface in the migration of primordial germ cells in early chick embryos: effects of concanavalin A

Development ◽  
1978 ◽  
Vol 46 (1) ◽  
pp. 5-20
Author(s):  
H. Lee ◽  
N. Karasanyi ◽  
R. G. Nagele

Effects of concanavalin A (Con A) on the morphology and migration of primordial germ cells (PGCs) in stage-6 to -12 chick embryos were investigated. Con A, at a sublethal dose (10µg/ml), inhibited migration of PGCs from the germinal crescent area to other parts of the embryo. Affected PGCs were more rounded without the usual cytoplasmic extensions, but the integrity of other structures was unaffected. Nearly identical results were obtained with another lectin, wheat germ agglutinin (10µg/ml). Histochemistry using Con A-horseradish peroxidase revealed that PGCs in control embryos had a thin, rather uniform layer of extracellular coat material (ECM). Con A appeared to alter the distribution of ECM on PGCs, i.e. some parts of the cell surface were devoid of any detectable ECM, while others had small, scattered patches of ECM. Con A effects were alleviated by α-methyl-d-mannoside. Overall results of the present study indicated that the observed inhibition of PGC migration in early chick embryos is a consequence of Con A-induced alterations of cell surface properties.

Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 53-63
Author(s):  
V. Gremigni ◽  
C. Miceli ◽  
I. Puccinelli

Specimens from a polyploid biotype of Dugesia lugubris s.l. were used to clarify the role and fate of germ cells during planarian regeneration. These specimens provide a useful karyological marker because embryonic and somatic cells (3n = 12) can be easily distinguished from male (2n = 8) and female (6n = 24) germ cells by their chromosome number. We succeed in demonstrating how primordial germ cells participate in blastema formation and take part in rebuilding somatic tissues. This evidence was obtained by cutting each planarian specimen twice at appropriate levels. The first aimed to induce primordial germ cells to migrate to the wound. The second cut was performed after complete regeneration and aimed to obtain a blastema from a cephalic or caudal area devoid of gonads. A karyological analysis of mitotic cells present in each blastema obtained after the second cut provided evidence that cells, originally belonging to the germ lines, are still present in somatic tissues even months after complete regeneration. The role of primordial germ cells in planarian regeneration was finally discussed in relation to the phenomenon of metaplasia or transdifferentiation.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


1992 ◽  
Vol 16 (9) ◽  
pp. 853-857 ◽  
Author(s):  
I CHANG ◽  
A TAJIMA ◽  
Y YASUDA ◽  
T CHIKAMUNE ◽  
T OHNO

Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1235-1242 ◽  
Author(s):  
U. Koshimizu ◽  
T. Taga ◽  
M. Watanabe ◽  
M. Saito ◽  
Y. Shirayoshi ◽  
...  

Leukemia inhibitory factor (LIF) is a cytokine known to influence proliferation and/or survival of mouse primordial germ cells (PGC) in culture. The receptor complex for LIF comprises LIF-binding subunit and non-binding signal transducer, gp130. The gp130 was originally identified as a signal-transducing subunit of interleukin (IL)-6 and later also found to be a functional component of receptor complexes for other LIF-related cytokines (oncostatin M [OSM], ciliary neurotrophic factor [CNTF] and IL-11). In this study, we have analyzed the functional role of gp130-mediated signaling in PGC growth in vitro. OSM was able to fully substitute for LIF; both cytokines promoted the proliferation of migratory PGC (mPGC) and enhanced the viability of postmigratory (colonizing) PGC (cPGC) when cultured on SI/SI4-m220 cells. Interestingly, IL-11 stimulated mPGC growth comparable to LIF and OSM, but did not affect cPGC survival. IL-6 and CNTF did not affect PGC. In addition, a combination of IL-6 and soluble IL-6 binding subunit (sIL-6R), which is known to activate intracellular signaling via gp130, fully reproduced the LIF action of PGC. Both in the presence and absence of LIF, addition of neutralizing antibody against gp130 in culture remarkably blocked cPGC survival. These results suggest a pivotal role of gp130 in PGC development, especially that it is indispensable for cPGC survival as comparable to the c-KIT-mediated action. We have further demonstrated that a combination of LIF with forskolin or retinoic acid, a potent mitogen for PGC, supported the proliferation of PGC, leading to propagation of the embryonic stem cell-like cells, termed embryonic germ (EG) cells. Since EG cells were also obtained by using OSM or the IL-6/sIL-6R complex in place of LIF, a significant contribution of gp130-mediated signaling in EG cell formation was further suggested.


1975 ◽  
Vol 19 (1) ◽  
pp. 11-20
Author(s):  
V.O. Sing ◽  
S. Bartnicki-Garcia

The binding of concanavalin A (Con A) to the cell surface of zoospores and cysts of Phytophthora palmivora was studied by radiometry (125I-Con A), ultraviolet microscopy (fluorescein-Con A) and electron microscopy peroxidase-diaminobenzidine technique). Zoospores were found to secrete during the early stages of encystment a Con A-binding material susceptible to trypsin digestion. This glycoprotein is contained in the so-called peripheral vesicles and is probably responsible for the adhesion of the encysting zoospores to solid surfaces.


2019 ◽  
Vol 31 (3) ◽  
pp. 509 ◽  
Author(s):  
Minli Yu ◽  
Dongfeng Li ◽  
Wanyan Cao ◽  
Xiaolu Chen ◽  
Wenxing Du

Ten–eleven translocation 1 (Tet1) is involved in DNA demethylation in primordial germ cells (PGCs); however, the precise regulatory mechanism remains unclear. In the present study the dynamics of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in developing PGCs and the role of Tet1 in PGC demethylation were analysed. Results show that 5mC levels dropped significantly after embryonic Day 4 (E4) and 5hmC levels increased reaching a peak at E5–E5.5. Interestingly, TET1 protein was highly expressed during E5 to E5.5, which showed a consistent trend with 5hmC. The expression of pluripotency-associated genes (Nanog, PouV and SRY-box 2 (Sox2)) and germ cell-specific genes (caveolin 1 (Cav1), piwi-like RNA-mediated gene silencing 1 (Piwi1) and deleted in azoospermia-like (Dazl)) was upregulated after E5, whereas the expression of genes from the DNA methyltransferase family was decreased. Moreover, the Dazl gene was highly methylated in early PGCs and then gradually hypomethylated. Knockdown of Tet1 showed impaired survival and proliferation of PGCs, as well as increased 5mC levels and reduced 5hmC levels. Further analysis showed that knockdown of Tet1 led to elevated DNA methylation levels of Dazl and downregulated gene expression including Dazl. Thus, this study reveals the dynamic epigenetic reprogramming of chicken PGCs invivo and the molecular mechanism of Tet1 in regulating genomic DNA demethylation and hypomethylation of Dazl during PGC development.


1975 ◽  
Vol 23 (8) ◽  
pp. 607-617 ◽  
Author(s):  
T Amakawa ◽  
T Barka

The submandibular glands of 4-week-old rats were dissociated by a procedure involving digestions with collagenase and hyaluronidase, chelation of divalent cations and mechanical force. A suspension of single cells was obtained in low yield by centrifugation in a Ficoll-containing medium. Immediately after dissociation and after a culture period of 16-18 hr the dissociated cells were tested for agglutinability by concanavalin A (Con A). Using ferritin (tfer)-conjugated Con A the lectin binding by the isolated acinar cells was also studied. The dissociated cells were agglutinated by low concentrations of Con A and bound Fer-Con A molecules on their entire surface without any indication of polarization of the cell membrane. There was a considerable cell to cell variation in the amount of Fer-Con A binding which was, in general, sparse and patchy. The contact surfaces between agglutinated cells revealed a dense binding of Fer-Con A molecules irrespective of the types of cells participating in the agglutination reaction. Cells cultured for 16-18 hr were no longer agglutinated by Con A. As compared to the freshly dissociated cells the cultured acinar cells revealed a more uniform and denser binding of Fer-Con A molecules. Furthermore, there were more lectin molecules bound to the cell surface corresponding to the basal part of the cell, where the nucleus and most of the rough surface endoplasmic reticulum were located, than to the apical cell surface. It is suggested that the higher density of lectin-binding sites on the cell surface in the vicinity of the cisternae of the rough endoplasmic reticulum indicates insertion sites of newly synthesized membrane glycoproteins.


Sign in / Sign up

Export Citation Format

Share Document