scholarly journals Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites

2002 ◽  
Vol 115 (24) ◽  
pp. 4777-4786 ◽  
Author(s):  
Y. Zhang
2002 ◽  
Vol 13 (10) ◽  
pp. 3546-3559 ◽  
Author(s):  
Jane Sottile ◽  
Denise C. Hocking

Remodeling of extracellular matrices occurs during development, wound healing, and in a variety of pathological processes including atherosclerosis, ischemic injury, and angiogenesis. Thus, identifying factors that control the balance between matrix deposition and degradation during tissue remodeling is essential for understanding mechanisms that regulate a variety of normal and pathological processes. Using fibronectin-null cells, we found that fibronectin polymerization into the extracellular matrix is required for the deposition of collagen-I and thrombospondin-1 and that the maintenance of extracellular matrix fibronectin fibrils requires the continual polymerization of a fibronectin matrix. Further, integrin ligation alone is not sufficient to maintain extracellular matrix fibronectin in the absence of fibronectin deposition. Our data also demonstrate that the retention of thrombospondin-1 and collagen I into fibrillar structures within the extracellular matrix depends on an intact fibronectin matrix. An intact fibronectin matrix is also critical for maintaining the composition of cell–matrix adhesion sites; in the absence of fibronectin and fibronectin polymerization, neither α5β1 integrin nor tensin localize to fibrillar cell–matrix adhesion sites. These data indicate that fibronectin polymerization is a critical regulator of extracellular matrix organization and stability. The ability of fibronectin polymerization to act as a switch that controls the organization and composition of the extracellular matrix and cell–matrix adhesion sites provides cells with a means of precisely controlling cell-extracellular matrix signaling events that regulate many aspects of cell behavior including cell proliferation, migration, and differentiation.


2021 ◽  
Author(s):  
Ana E. González Wusener ◽  
Ángela González ◽  
María E. Perez Collado ◽  
Melina R. Maza ◽  
Ignacio J. General ◽  
...  

Protein tyrosine phosphatase 1B (PTP1B) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here we used Bimolecular Fluorescence Complementation (BiFC) assays in combination with a substrate trapping mutant of PTP1B to directly examine whether relevant phosphotyrosines on paxillin and FAK are substrates of the phosphatase in the context of cell-matrix adhesion sites. We find that formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin and the localization of the focal adhesion kinase (FAK) at adhesion sites. In addition, we find that PTP1B specifically targets the Y925 on the focal adhesion target (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicates that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle, and its interaction with paxillin at adhesion sites.


2002 ◽  
Vol 282 (1) ◽  
pp. H21-H29 ◽  
Author(s):  
Alan B. Moy ◽  
Ken Blackwell ◽  
Anant Kamath

We compared temporal changes in isometric tension in cultured human umbilical vein endothelial cells inoculated on a polymerized collagen membrane with changes in cell-cell and cell-matrix adhesion derived by a mathematical model of transendothelial cell resistance. Thrombin and histamine disrupt barrier function by targeting a greater loss in cell-cell adhesion, which preceded losses in overall transendothelial resistance. There were minor losses in cell-matrix adhesion, which was temporally slower than the decline in the overall transendothelial resistance. In contrast, thrombin and histamine restored barrier function by initiating a restoration of cell-matrix adhesion, which occurred before an increase in overall transendothelial resistance. Thrombin mediated a second and slower decline in cell-cell adhesion, which was not observed in histamine-treated cells. This decline in cell-cell adhesion temporally correlated with expressed maximal levels of tension development, suggesting that actin-myosin contraction directly strains cell-cell adhesion sites. Pretreatment of cells with ML-7 mediated more rapid recovery of cell-cell adhesion and had no effect on cell-matrix adhesion. Taken together, expression of actin-myosin contraction affects the restoration of barrier function by straining cell-cell adhesion sites.


2021 ◽  
Vol 22 (10) ◽  
pp. 5144
Author(s):  
Antonín Sedlář ◽  
Martina Trávníčková ◽  
Pavla Bojarová ◽  
Miluše Vlachová ◽  
Kristýna Slámová ◽  
...  

Galectin-3 (Gal-3) is a β-galactoside-binding protein that influences various cell functions, including cell adhesion. We focused on the role of Gal-3 as an extracellular ligand mediating cell-matrix adhesion. We used human adipose tissue-derived stem cells and human umbilical vein endothelial cells that are promising for vascular tissue engineering. We found that these cells naturally contained Gal-3 on their surface and inside the cells. Moreover, they were able to associate with exogenous Gal-3 added to the culture medium. This association was reduced with a β-galactoside LacdiNAc (GalNAcβ1,4GlcNAc), a selective ligand of Gal-3, which binds to the carbohydrate recognition domain (CRD) in the Gal-3 molecule. This ligand was also able to detach Gal-3 newly associated with cells but not Gal-3 naturally present on cells. In addition, Gal-3 preadsorbed on plastic surfaces acted as an adhesion ligand for both cell types, and the cell adhesion was resistant to blocking with LacdiNAc. This result suggests that the adhesion was mediated by a binding site different from the CRD. The blocking of integrin adhesion receptors on cells with specific antibodies revealed that the cell adhesion to the preadsorbed Gal-3 was mediated, at least partially, by β1 and αV integrins—namely α5β1, αVβ3, and αVβ1 integrins.


2007 ◽  
Vol 213 (3) ◽  
pp. 565-573 ◽  
Author(s):  
Allison L. Berrier ◽  
Kenneth M. Yamada

1999 ◽  
Vol 248 (2) ◽  
pp. 531-537 ◽  
Author(s):  
Bianca S. Verbeek ◽  
Thea M. Vroom ◽  
Gert Rijksen

Sign in / Sign up

Export Citation Format

Share Document