Association of cyclin-bound p34cdc2 with subcellular structures in xenopus eggs

1992 ◽  
Vol 102 (2) ◽  
pp. 285-297 ◽  
Author(s):  
D. Leiss ◽  
M.A. Felix ◽  
E. Karsenti

Cell cycle progression is controlled by changes in kinase activity of homologs of the fission yeast protein p34cdc2. The p34cdc2 kinase is activated by its association with a cyclin subunit, followed by post-translational modifications. Here, we show that in Xenopus eggs stimulated to enter the early embryonic cell cycle by an electric shock, part of the p34cdc2 becomes associated with subcellular fractions as the eggs progress towards mitosis. This occurs as a result of cyclin accumulation because most of the B-type cyclins and some of the A-type cyclins are found in the particulate fraction. Moreover, as soon as cyclins are degraded, p34cdc2 is released in the soluble fraction. The p34cdc2-cyclin complex can be solubilised by 80 mM beta-glycerophosphate (in the standard MPF extraction buffer) or by high salt concentrations. The post-translational modifications leading to cdc2 kinase activation by cyclin occur in the insoluble form. Following fractionation of egg extracts by sucrose gradient centrifugation, the p34cdc2-cyclin B complex is found in several fractions, but especially in two discrete peaks. We present evidence that in the slow-sedimenting peak the p34cdc2-cyclin B complex is associated with the 60 S subunit of monoribosomes. It could be targeted in this fashion to substrates such as ribosomal proteins and maybe to cytoskeletal proteins, since ribosomes bind to microtubules and are present in the spindle. The p34cdc2-cyclin B complex is also found in a faster-migrating fraction containing various membranous structures, including Golgi stacks. Therefore, as observed by immunofluorescence in other systems, it seems that cyclin subunits target p34cdc2 to specific cellular sites and this is certainly important for its function. In addition, we present preliminary evidence suggesting that some component present in the ribosome-containing fraction is required for activation of the p34cdc2-cyclin B complex.

1997 ◽  
Vol 110 (5) ◽  
pp. 523-528 ◽  
Author(s):  
C.F. Lehner ◽  
M.E. Lane

The molecular identification of an evolutionarily conserved set of cell cycle regulators in yeast, Xenopus egg extracts, and vertebrate cell culture has opened up a new perspective for understanding the mechanisms that regulate cell proliferation during metazoan development. Now we can study how the crucial regulators of eukaryotic cell cycle progression, the various cyclin/cdk complexes (for a recent review see Nigg (1995) BioEssays 17, 471–480), are turned on or off during development. In Drosophila, this analysis is most advanced, in particular in the case of the rather rigidly programmed embryonic cell cycles that generate the cells of the larvae. In addition, this analysis has revealed how the mitotic cycle is transformed into an endocycle which allows the extensive growth of larvae and oocytes. In contrast, we know little about cyclin/cdk regulation during the imaginal proliferation that generates the cells of the adult. Nevertheless, we will also consider this second developmental phase with its conspicuous regulative character, because it will be of great interest for the analysis of the molecular mechanisms that integrate growth and proliferation during development.


2003 ◽  
Vol 14 (10) ◽  
pp. 4003-4014 ◽  
Author(s):  
James R. A. Hutchins ◽  
Dina Dikovskaya ◽  
Paul R. Clarke

Activation of Cdc2/cyclin B kinase and entry into mitosis requires dephosphorylation of inhibitory sites on Cdc2 by Cdc25 phosphatase. In vertebrates, Cdc25C is inhibited by phosphorylation at a single site targeted by the checkpoint kinases Chk1 and Cds1/Chk2 in response to DNA damage or replication arrest. In Xenopus early embryos, the inhibitory site on Cdc25C (S287) is also phosphorylated by a distinct protein kinase that may determine the intrinsic timing of the cell cycle. We show that S287-kinase activity is repressed in extracts of unfertilized Xenopus eggs arrested in M phase but is rapidly stimulated upon release into interphase by addition of Ca2+, which mimics fertilization. S287-kinase activity is not dependent on cyclin B degradation or inactivation of Cdc2/cyclin B kinase, indicating a direct mechanism of activation by Ca2+. Indeed, inhibitor studies identify the predominant S287-kinase as Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKII phosphorylates Cdc25C efficiently on S287 in vitro and, like Chk1, is inhibited by 7-hydroxystaurosporine (UCN-01) and debromohymenialdisine, compounds that abrogate G2 arrest in somatic cells. CaMKII delays Cdc2/cyclin B activation via phosphorylation of Cdc25C at S287 in egg extracts, indicating that this pathway regulates the timing of mitosis during the early embryonic cell cycle.


1996 ◽  
Vol 7 (3) ◽  
pp. 457-469 ◽  
Author(s):  
W Shou ◽  
W G Dunphy

We have isolated Xenopus p28Kix1, a member of the p21CIP1/p27KIP1/p57KIP2 family of cyclin-dependent kinase (Cdk) inhibitors. Members of this family negatively regulate cell cycle progression in mammalian cells by inhibiting the activities of Cdks. p28 shows significant sequence homology with p21, p27, and p57 in its N-terminal region, where the Cdk inhibition domain is known to reside. In contrast, the C-terminal domain of p28 is distinct from that of p21, p27, and p57. In co-immunoprecipitation experiments, p28 was found to be associated with Cdk2, cyclin E, and cyclin A, but not the Cdc2/cyclin B complex in Xenopus egg extracts. Xenopus p28 associates with the proliferating cell nuclear antigen, but with a substantially lower affinity than human p21. In kinase assays with recombinant Cdks, p28 inhibits pre-activated Cdk2/cyclin E and Cdk2/cyclin A, but not Cdc2/cyclin B. However, at high concentrations, p28 does prevent the activation of Cdc2/cyclin B by the Cdk-activating kinase. Consistent with the role of p28 as a Cdk inhibitor, recombinant p28 elicits an inhibition of both DNA replication and mitosis upon addition to egg extracts, indicating that it can regulate multiple cell cycle transitions. The level of p28 protein shows a dramatic developmental profile: it is low in Xenopus oocytes, eggs, and embryos up to stage 11, but increases approximately 100-fold between stages 12 and 13, and remains high thereafter. The induction of p28 expression temporally coincides with late gastrulation. Thus, although p28 may play only a limited role during the early embryonic cleavages, it may function later in development to establish a somatic type of cell cycle. Taken together, our results indicate that Xenopus p28 is a new member of the p21/p27/p57 class of Cdk inhibitors, and that it may play a role in developmental processes.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 995
Author(s):  
Xiaoyan Hou ◽  
Lijun Qiao ◽  
Ruijuan Liu ◽  
Xuechao Han ◽  
Weifang Zhang

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1179-1195 ◽  
Author(s):  
Jun-Yuan Ji ◽  
Marjan Haghnia ◽  
Cory Trusty ◽  
Lawrence S B Goldstein ◽  
Gerold Schubiger

Abstract Coordination between cell-cycle progression and cytoskeletal dynamics is important for faithful transmission of genetic information. In early Drosophila embryos, increasing maternal cyclin B leads to higher Cdk1-CycB activity, shorter microtubules, and slower nuclear movement during cycles 5-7 and delays in nuclear migration to the cortex at cycle 10. Later during cycle 14 interphase of six cycB embryos, we observed patches of mitotic nuclei, chromosome bridges, abnormal nuclear distribution, and small and large nuclei. These phenotypes indicate disrupted coordination between the cell-cycle machinery and cytoskeletal function. Using these sensitized phenotypes, we performed a dosage-sensitive genetic screen to identify maternal proteins involved in this process. We identified 10 suppressors classified into three groups: (1) gene products regulating Cdk1 activities, cdk1 and cyclin A; (2) gene products interacting with both microtubules and microfilaments, Actin-related protein 87C; and (3) gene products interacting with microfilaments, chickadee, diaphanous, Cdc42, quail, spaghetti-squash, zipper, and scrambled. Interestingly, most of the suppressors that rescue the astral microtubule phenotype also reduce Cdk1-CycB activities and are microfilament-related genes. This suggests that the major mechanism of suppression relies on the interactions among Cdk1-CycB, microtubule, and microfilament networks. Our results indicate that the balance among these different components is vital for normal early cell cycles and for embryonic development. Our observations also indicate that microtubules and cortical microfilaments antagonize each other during the preblastoderm stage.


1995 ◽  
Vol 15 (12) ◽  
pp. 6686-6693 ◽  
Author(s):  
A M MacNicol ◽  
A J Muslin ◽  
E L Howard ◽  
A Kikuchi ◽  
M C MacNicol ◽  
...  

The Raf-1 gene product is activated in response to cellular stimulation by a variety of growth factors and hormones. Raf-1 activity has been implicated in both cellular differentiation and proliferation. We have examined the regulation of the Raf-1/MEK/MAP kinase (MAPK) pathway during embryonic development in the frog Xenopus laevis. We report that Raf-1, MEK, and MAPK activities are turned off following fertilization and remain undetectable up until blastula stages (stage 8), some 4 h later. Tight regulation of the Raf-1/MEK/MAPK pathway following fertilization is crucial for embryonic cell cycle progression. Inappropriate reactivation of MAPK activity by microinjection of oncogenic Raf-1 RNA results in metaphase cell cycle arrest and, consequently, embryonic lethality. Our findings demonstrate an absolute requirement, in vivo, for inactivation of the MAPK signaling pathway to allow normal cell cycle progression during the period of synchronous cell divisions which occur following fertilization. Further, we show that cytostatic factor effects are mediated through MEK and MAPK.


1998 ◽  
Vol 111 (12) ◽  
pp. 1751-1757 ◽  
Author(s):  
A. Abrieu ◽  
T. Brassac ◽  
S. Galas ◽  
D. Fisher ◽  
J.C. Labbe ◽  
...  

We have investigated whether Plx1, a kinase recently shown to phosphorylate cdc25c in vitro, is required for activation of cdc25c at the G2/M-phase transition of the cell cycle in Xenopus. Using immunodepletion or the mere addition of an antibody against the C terminus of Plx1, which suppressed its activation (not its activity) at G2/M, we show that Plx1 activity is required for activation of cyclin B-cdc2 kinase in both interphase egg extracts receiving recombinant cyclin B, and cycling extracts that spontaneously oscillate between interphase and mitosis. Furthermore, a positive feedback loop allows cyclin B-cdc2 kinase to activate Plx1 at the G2/M-phase transition. In contrast, activation of cyclin A-cdc2 kinase does not require Plx1 activity, and cyclin A-cdc2 kinase fails to activate Plx1 and its consequence, cdc25c activation in cycling extracts.


2001 ◽  
Vol 114 (2) ◽  
pp. 257-267 ◽  
Author(s):  
A. Abrieu ◽  
M. Doree ◽  
D. Fisher

Throughout oocyte maturation, and subsequently during the first mitotic cell cycle, the MAP kinase cascade and cyclin-B-Cdc2 kinase are associated with the control of cell cycle progression. Many roles have been directly or indirectly attributed to MAP kinase and its influence on cyclin-B-Cdc2 kinase in different model systems; yet a principle theme does not emerge from the published literature, some of which is apparently contradictory. Interplay between these two kinases affects the major events of meiotic maturation throughout the animal kingdom, including the suppression of DNA replication, the segregation of meiotic chromosomes, and the prevention of parthenogenetic activation. Central to many of these events appears to be the control by MAP kinase of cyclin translation and degradation.


2009 ◽  
Vol 185 (2) ◽  
pp. 193-202 ◽  
Author(s):  
Arne Lindqvist ◽  
Verónica Rodríguez-Bravo ◽  
René H. Medema

The decision to enter mitosis is mediated by a network of proteins that regulate activation of the cyclin B–Cdk1 complex. Within this network, several positive feedback loops can amplify cyclin B–Cdk1 activation to ensure complete commitment to a mitotic state once the decision to enter mitosis has been made. However, evidence is accumulating that several components of the feedback loops are redundant for cyclin B–Cdk1 activation during normal cell division. Nonetheless, defined feedback loops become essential to promote mitotic entry when normal cell cycle progression is perturbed. Recent data has demonstrated that at least three Plk1-dependent feedback loops exist that enhance cyclin B–Cdk1 activation at different levels. In this review, we discuss the role of various feedback loops that regulate cyclin B–Cdk1 activation under different conditions, the timing of their activation, and the possible identity of the elusive trigger that controls mitotic entry in human cells.


Sign in / Sign up

Export Citation Format

Share Document