scholarly journals Epithelial sphingolipid sorting is insensitive to reorganization of the Golgi by nocodazole, but is abolished by monensin in MDCK cells and by brefeldin A in Caco-2 cells

1993 ◽  
Vol 104 (3) ◽  
pp. 833-842 ◽  
Author(s):  
G. van Meer ◽  
W. van't Hof

In epithelial MDCK and Caco-2 cells, short-chain analogs of glucosylceramide and sphingomyelin are delivered from the Golgi to the cell surface with different apical/basolateral polarities, which results in an apical enrichment of the glycolipid glucosylceramide over the phospholipid sphingomyelin. Here, we have interfered with the integrity of the Golgi complex in various ways and tested the effects on lipid transport and sorting. Nocodazole, which depolymerizes microtubules, dispersed the Golgi over the cytoplasm of MDCK cells and reduced transport of newly synthesized C6-NBD-(N-6[7-nitro-2,1,3-benzoxadiazol-4-yl]aminocaproyl)-glucosy lceramide and C6-NBD-sphingomyelin to the apical surface by 40%. The lipids were not mistargeted to the basolateral surface and upon removal of nocodazole, apical transport recovered. Nocodazole did not affect the apical enrichment of glucosylceramide over sphingomyelin. The ionophore monensin led to swelling of the Golgi of MDCK cells and inhibited lipid transport to the cell surface by 30–50%. Whereas sphingomyelin transport to both surface domains was equally affected, monensin mainly inhibited apical transport of glucosylceramide. At 10–20 microM of monensin, the two lipids displayed the same polarity of delivery: sorting between the two lipids was abolished. Brefeldin A at 1 microgram/ml, which resulted in disruption of the Golgi in HepG2 cells and completely inhibited protein secretion, had no inhibitory effect on transport of the C6-NBD-lipids to the surface. The same was observed in Caco-2 cells. However, brefeldin A selectively shifted transport of sphingomyelin towards the apical direction which abolished the apical enrichment of glucosylceramide over sphingomyelin. Caco-2 cells were used because in MDCK cells brefeldin A did not change Golgi structure nor lipid transport and sorting. In summary, modification of the Golgi by monensin and brefeldin A, but not nocodazole, interfered with the sorting event by which glucosylceramide is enriched over sphingomyelin in the transport pathway from the Golgi to the apical surface.

1996 ◽  
Vol 132 (5) ◽  
pp. 813-821 ◽  
Author(s):  
P van der Bijl ◽  
M Lopes-Cardozo ◽  
G van Meer

The high concentration of glycosphingolipids on the apical surface of epithelial cells may be generated by selective transport from their site of synthesis to the cell surface. Previously, we showed that canine kidney MDCK and human intestinal Caco-2 cells converted a ceramide carrying the short fluorescent fatty acid C6-NBD to glucosylceramide (GlcCer) and sphingomyelin (SM), and that GlcCer was preferentially transported to the apical surface as compared to SM. Here, we address the point that not all glycosphingolipid classes are apically enriched in epithelia. We show that a ceramide containing the 2-hydroxy fatty acid C6OH was preferentially converted by MDCK and Caco-2 cells to galactosylceramide (GalCer) and its derivatives galabiosylceramide (Ga2Cer) and sulfatide (SGalCer) as compared to SM and GlcCer--all endogenous lipid classes of these cells. Transport to the apical and basolateral cell surface was monitored by a BSA-depletion assay. In MDCK cells, GalCer reached the cell surface with two- to sixfold lower apical/basolateral polarity than GlcCer. Remarkably, in Caco-2 cells GalCer and GlcCer displayed the same apical/basolateral polarity, but it was sixfold lower for lipids with a C6OH chain than for C6-NBD lipids. Therefore, the sorting of a sphingolipid appears to depend on lipid structure and cell type. We propose that the different ratios of gluco- and galactosphingolipid synthesis in the various epithelial tissues govern lipid sorting in the membrane of the trans Golgi network by dictating the composition of the domains from where vesicles bud to the apical and basolateral cell surface.


1993 ◽  
Vol 106 (4) ◽  
pp. 1313-1321
Author(s):  
M.E. Taub ◽  
W.C. Shen

A conjugate of horseradish peroxidase (HRP) to poly(L-lysine) (PLL) was used as a non-specific adsorptive probe to study transcytosis in MDCK strain I and Caco-2 epithelial cells. As we have shown previously, HRP-PLL transcytosis proceeds via an intracellular, non-lysosomal proteolytic compartment in MDCK cells; yet, this compartment is utilized for transcytosis only in the basal-to-apical direction (Taub, M. E. and Shen, W.-C. J. Cell. Physiol., 150, 283–290, 1992). Using size exclusion chromatography, we demonstrate that the PLL moiety of the conjugate is effectively cleaved during transcytosis, thus releasing free HRP from the apical surface of the cells. Pulse-chase studies indicate that approximately 6% of basolateral surface-associated HRP-PLL conjugate in Transwell-grown cell monolayers enters the basal-to-apical transcytotic pathway. Brief (1 hour) treatment with 160 nM phorbol ester (PMA), a protein kinase C stimulator, elicits a 2-fold increase in the rate and amount of HRP-PLL transcytosis following a 1 hour lag time. Treatment with 1.6 micrograms/ml brefeldin A (BFA) inhibits HRP-PLL transcytosis by approximately 30%; additionally, BFA is able to abolish completely the PMA stimulatory effect. Removal of BFA causes a re-establishment of the normal rate of transcytosis within 2 hours, demonstrating the reversibility of BFA inhibition with respect to HRP-PLL transcytosis. Thus, PMA most likely elicits an increase in the amount of basally internalized conjugate delivered to BFA-sensitive transcytotic compartments.(ABSTRACT TRUNCATED AT 250 WORDS)


1984 ◽  
Vol 99 (6) ◽  
pp. 2131-2139 ◽  
Author(s):  
K S Matlin ◽  
K Simons

In Madin-Darby canine kidney (MDCK) cells (a polarized epithelial cell line) infected with influenza virus, the hemagglutinin behaves as an apical plasma membrane glycoprotein. To determine biochemically the domain on the plasma membrane, apical or basolateral, where newly synthesized hemagglutinin first appears, cells were cultured on Millipore filters to make both cell surface domains independently accessible. Hemagglutinin in virus-infected cells was pulse-labeled, chased, and detected on the plasma membrane with a sensitive trypsin assay. Under all conditions tested, newly made hemagglutinin appeared simultaneously on both domains, with the bulk found in the apical membrane. When trypsin was continuously present on the basolateral surface during the chase, little hemagglutinin was cleaved relative to the amount transported apically. In addition, specific antibodies against the hemagglutinin placed basolaterally had no effect on transport to the apical domain. These observations suggested that most newly synthesized hemagglutinin does not transiently appear on the basolateral surface but rather is delivered directly to the apical surface in amounts that account for its final polarized distribution.


2000 ◽  
Vol 113 (23) ◽  
pp. 4193-4202 ◽  
Author(s):  
N.R. Meerson ◽  
V. Bello ◽  
J.L. Delaunay ◽  
T.A. Slimane ◽  
D. Delautier ◽  
...  

Glycosylation was considered the major signal candidate for apical targeting of transmembrane proteins in polarized epithelial cells. However, direct demonstration of the role of glycosylation has proved difficult because non-glycosylated apical transmembrane proteins usually do not reach the cell surface. Here we were able to follow the targeting of the apical transmembrane glycoprotein NPP3 both when glycosylated and non-glycosylated. Transfected in polarized MDCK and Caco-2 cells, NPP3 was exclusively expressed at the apical membrane. The transport kinetics of the protein to the cell surface were studied after metabolic (35)S-labeling and surface immunoprecipitation. The newly synthesized protein was mainly targeted directly to the apical surface in MDCK cells, whereas 50% transited through the basolateral surface in Caco-2 cells. In both cell types, the basolaterally targeted pool was effectively transcytosed to the apical surface. In the presence of tunicamycin, NPP3 was not N-glycosylated. The non-glycosylated protein was partially retained intracellularly but the fraction that reached the cell surface was nevertheless predominantly targeted apically. However, transcytosis of the non-glycosylated protein was partially impaired in MDCK cells. These results provide direct evidence that glycosylation cannot be considered an apical targeting signal for NPP3, although glycosylation is necessary for correct trafficking of the protein to the cell surface.


1999 ◽  
Vol 145 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Rosa Puertollano ◽  
Fernando Martín-Belmonte ◽  
Jaime Millán ◽  
María del Carmen de Marco ◽  
Juan P. Albar ◽  
...  

The MAL (MAL/VIP17) proteolipid is a nonglycosylated integral membrane protein expressed in a restricted pattern of cell types, including T lymphocytes, myelin-forming cells, and polarized epithelial cells. Transport of the influenza virus hemagglutinin (HA) to the apical surface of epithelial Madin-Darby canine kidney (MDCK) cells appears to be mediated by a pathway involving glycolipid- and cholesterol- enriched membranes (GEMs). In MDCK cells, MAL has been proposed previously as being an element of the protein machinery for the GEM-dependent apical transport pathway. Using an antisense oligonucleotide-based strategy and a newly generated monoclonal antibody to canine MAL, herein we have approached the effect of MAL depletion on HA transport in MDCK cells. We have found that MAL depletion diminishes the presence of HA in GEMs, reduces the rate of HA transport to the cell surface, inhibits the delivery of HA to the apical surface, and produces partial missorting of HA to the basolateral membrane. These effects were corrected by ectopic expression of MAL in MDCK cells whose endogenous MAL protein was depleted. Our results indicate that MAL is necessary for both normal apical transport and accurate sorting of HA.


1995 ◽  
Vol 108 (1) ◽  
pp. 369-377 ◽  
Author(s):  
K.L. Soole ◽  
M.A. Jepson ◽  
G.P. Hazlewood ◽  
H.J. Gilbert ◽  
B.H. Hirst

To evaluate whether a glycosylphosphatidylinositol (GPI) anchor can function as a protein sorting signal in polarized intestinal epithelial cells, the GPI-attachment sequence from Thy-1 was fused to bacterial endoglucanase E' (EGE') from Clostridium thermocellum and polarity of secretion of the chimeric EGE'-GPI protein was evaluated. The chimeric EGE'-GPI protein was shown to be associated with a GPI anchor by TX-114 phase-partitioning and susceptibility to phosphoinositol-specific phospholipase C. In polarized MDCK cells, EGE' was localized almost exclusively to the apical cell surface, while in polarized intestinal Caco-2 cells, although 80% of the extracellular form of the enzyme was routed through the apical membrane over a 24 hour period, EGE' was also detected at the basolateral membrane. Rates of delivery of EGE'-GPI to the two membrane domains in Caco-2 cells, as determined with a biotinylation protocol, revealed apical delivery was approximately 2.5 times that of basolateral. EGE' delivered to the basolateral cell surface was transcytosed to the apical surface. These data indicate that a GPI anchor does represent a dominant apical sorting signal in intestinal epithelial cells. However, the mis-sorting of a proportion of EGE'GPI to the basolateral surface of Caco-2 cells provides an explanation for additional sorting signals in the ectodomain of some endogenous GPI-anchored proteins.


1987 ◽  
Vol 104 (2) ◽  
pp. 231-241 ◽  
Author(s):  
M J Rindler ◽  
I E Ivanov ◽  
D D Sabatini

The synchronized directed transfer of the envelope glycoproteins of the influenza and vesicular stomatitis viruses from the Golgi apparatus to the apical and basolateral surfaces, respectively, of polarized Madin-Darby canine kidney (MDCK) cells can be achieved using temperature-sensitive mutant viruses and appropriate temperature shift protocols (Rindler, M. J., I. E. Ivanov, H. Plesken, and D. D. Sabatini, 1985, J. Cell Biol., 100:136-151). The microtubule-depolymerizing agents colchicine and nocodazole, as well as the microtubule assembly-promoting drug taxol, were found to interfere with the normal polarized delivery and exclusive segregation of hemagglutinin (HA) to the apical surface but not with the delivery and initial accumulation of G on the basolateral surface. Immunofluorescence analysis of permeabilized monolayers of influenza-infected MDCK cells treated with the microtubule-acting drugs demonstrated the presence of substantial amounts of HA protein on both the apical and basolateral surfaces. Moreover, in cells infected with the wild-type influenza virus, particles budded from both surfaces. Viral counts in electron micrographs showed that approximately 40% of the released viral particles accumulated in the intercellular spaces or were trapped between the cell and monolayer and the collagen support as compared to less than 1% on the basolateral surface of untreated infected cells. The effect of the microtubule inhibitors was not a result of a rapid redistribution of glycoprotein molecules initially delivered to the apical surface since a redistribution was not observed when the inhibitors were added to the cells after the HA was permitted to reach the apical surface at the permissive temperature and the synthesis of new HA was inhibited with cycloheximide. The altered segregation of the HA protein that occurs may result from the dispersal of the Golgi apparatus induced by the inhibitors or from the disruption of putative microtubules containing tracks that could direct vesicles from the trans Golgi apparatus to the cell surface. Since the vesicular stomatitis virus G protein is basolaterally segregated even when the Golgi elements are dispersed and hypothetical tracks disrupted, it appears that the two viral envelope glycoproteins are segregated by fundamentally different mechanisms and that the apical surface may be incapable of accepting vesicles carrying the G protein.


1989 ◽  
Vol 109 (5) ◽  
pp. 2117-2127 ◽  
Author(s):  
M P Lisanti ◽  
A Le Bivic ◽  
M Sargiacomo ◽  
E Rodriguez-Boulan

We used domain-selective biotinylation/125I-streptavidin blotting (Sargiacomo, M., M. P. Lisanti, L. Graeve, A. Le Bivic, and E. Rodriguez-Boulan. 1989 J. Membr. Biol. 107:277-286), in combination with lectin precipitation, to analyze the apical and basolateral glycoprotein composition of Madin-Darby canine kidney (MDCK) cells and to explore the role of glycosylation in the targeting of membrane glycoproteins. All six lectins used recognized both apical and basolateral glycoproteins, indicating that none of the sugar moieties detected were characteristic of the particular epithelial cell surface. Pulse-chase experiments coupled with domain-selective glycoprotein recovery were designed to detect the initial appearance of newly synthesized glycoproteins at the apical or basolateral cell surface. After a short pulse with a radioactive precursor, glycoproteins reaching each surface were biotinylated, extracted, and recovered via precipitation with immobilized streptavidin. Several basolateral glycoproteins (including two sulfated proteins) and at least two apical glycoproteins (one of them the major sulfated protein of MDCK cells) appeared at the corresponding surface after 20-40 min of chase, but were not detected in the opposite surface, suggesting that they were sorted intracellularly and vectorially delivered to their target membrane. Several "peripheral" apical proteins were detected at maximal levels on the apical surface immediately after the 15-min pulse, suggesting a very fast intracellular transit. Finally, domain-selective labeling of surface carbohydrates with biotin hydrazide (after periodate oxidation) revealed strikingly different integral and peripheral glycoprotein patterns, resembling the Con A pattern, after labeling with sulfo-N-hydroxy-succinimido-biotin. The approaches described here should be useful in characterizing the steady-state distribution and biogenesis of endogenous cell surface components in a variety of epithelial cell lines.


1990 ◽  
Vol 111 (6) ◽  
pp. 2909-2921 ◽  
Author(s):  
A W Brändli ◽  
R G Parton ◽  
K Simons

MDCK cells display fluid-phase transcytosis in both directions across the cell. Transcytosis of cell surface molecules was estimated by electron microscopic analysis of streptavidin-gold-labeled frozen sections of biotinylated cells. Within 3 h, approximately 10% of the surface molecules, biotinylated on the starting membrane domain, were detected on the opposite surface domain irrespective of the direction of transcytosis. This suggests that the transcytosis rates for surface molecules are equal in both directions across the cell as shown previously for fluid-phase markers. A biochemical assay was established to identify transcytosing glycoproteins in MDCKII-RCAr cells, a ricin-resistant mutant of MDCK. Due to a galactosylation defect, surface glycoproteins of these cells can be labeled efficiently with [3H]galactose. Transcytosis of [3H]galactose-labeled glycoproteins to the opposite membrane domain was detected by surface biotinylation. Detergent-solubilized glycoproteins derivatized with biotin were adsorbed onto streptavidin-agarose and separated by SDS-PAGE. A subset of the cell surface glycoproteins was shown to undergo transcytosis. Transport of these glycoproteins across the cell was time and temperature dependent. By comparative two-dimensional gel analysis, three classes of glycoproteins were defined. Two groups of glycoproteins were found to be transported unidirectionally by transcytosis, one from the apical to the basolateral surface and another from the basolateral to the apical surface. A third group of glycoproteins which has not been described previously, was found to be transported bidirectionally across the cell.


1995 ◽  
Vol 310 (1) ◽  
pp. 271-278 ◽  
Author(s):  
L Uhlin-Hansen ◽  
M Yanagishita

Rat ovarian granulosa cells were labelled with [35S]sulphate for 0.5-20 h and chased in the presence or absence of 1-2 micrograms/ml of brefeldin A (BFA) for up to 21 h. Heparan [35S]sulphate (HS) proteoglycans from the culture medium, plasma membrane and intracellular fractions were then analysed by gel chromatography. In the absence of BFA, about 85% of the plasma membrane-associated HS proteoglycans were endocytosed and subsequently degraded intracellularly. Recirculation of the HS proteoglycans between the intracellular pool and the cell surface was not observed. Exposing the cells to BFA for less than 1 h did not influence the turnover of the HS proteoglycans, whereas the effect of the drug on the Golgi functions reached a maximum in approx. 10 min. When the cells were treated with BFA for more than 1-2 h, the rate of endocytosis of HS proteoglycans was reduced to about 50% of the control. The delivery of endocytosed HS proteoglycans to lysosomes were not affected by the drug. Cycloheximide also reduced the endocytosis of HS proteoglycans, but not as much as BFA, indicating that the inhibitory effect of BFA can be only partly accounted for by a block of protein transport from the endoplasmic reticulum to the plasma membrane. In contrast with the endocytosis of HS proteoglycans, neither that of 125I-transferrin, known to be mediated by clathrin-coated vesicles, nor that of 125I-ricin, a marker molecule for bulk endocytosis, was affected by BFA. The half-life of 125I-transferrin and 125I-ricin in the plasma membrane was about 10 and 25 min respectively compared with about 5 h for the HS proteoglycans. Altogether, these results indicate that the endocytosis of plasma-membrane-associated HS proteoglycans is mediated by different mechanisms than the endocytosis of most other cell-surface proteins. Further, the mechanisms involved in the endocytosis of HS proteoglycans are sensitive to BFA.


Sign in / Sign up

Export Citation Format

Share Document