Regulation of p53 protein expression in human breast cancer cell lines

1993 ◽  
Vol 105 (3) ◽  
pp. 607-612 ◽  
Author(s):  
B. Vojtesek ◽  
D.P. Lane

Mutation of the p53 gene is a common occurrence in human breast cancers but is by no means universal. However, even in tumours where the gene is not mutated altered levels of p53 protein are often detected. This is also observed in cell lines derived from human breast cancers. By transfecting such cell lines containing either wild type or mutant p53 genes with a temperature-sensitive mutant mouse p53 gene we have established that the cellular environment plays a critical role in the regulation of p53 protein expression. The results suggest that tumours that aberrantly express wild-type p53 may have lost the normal growth regulatory response to the protein and thus be functionally similar to those expressing the mutant protein.

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 8601-8601
Author(s):  
H. Ikeda ◽  
T. Hideshima ◽  
G. Perrone ◽  
Y. Okawa ◽  
N. Raje ◽  
...  

8601 Background: The mutations of P53 tumor suppressor protein are associated with progressive in Multiple Myeloma (MM), conversely, stabilization of P53 leads to cell cycle arrest and apoptosis. In this study, we examined p53 protein expression and demonstrated the effect of P53 stabilization using a novel specific P53 stabilizer CBS9106 in MM. Method: We examined P53 protein expression using Immunoblot analysis, as well as the growth inhibitory effect of CBS9106 in MM cell lines and primary tumor cells from MM patients. We also defined whether CBS9106 can overcome the growth promoting effect of exogenous cytokines and bone marrow stroma cells (BMSCs) using [3H]-thymidine uptake assay. Results: Expression of P53 protein was observed in 3/3 primary tumor cells from MM patients and 6/6 MM cell lines. CBS9106 at low nM levels triggered cytotoxicity against p53 wild type MM cell lines and primary tumor cells from MM patients, associated with phosphorylation of P53 (serine15 and 20). In contrast, CBS9106 did not affect the survival of normal peripheral blood mononuclear cells from healthy volunteers at concentrations as high as 10 μM. This agent also induced G1 cell cycle arrest, followed by apoptosis associated with cleavage of caspase-3, -8, -9 and PARP. Neither growth stimulating cytokines (IL-6 and IGF-1) nor BMSCs protected against apoptotic effect of CBS9106. Moreover, we demonstrate that combination of CBS9106 with MDM2 inhibitor Nutrin3 or proteasome inhibitor bortezomib induces synergistic anti-MM activity in both P53 wild type MM cell lines and primary tumor cells from MM patients. Conclusions: Stabilizing P53 by CBS9106 represents a novel promising p53-based therapy in MM. These results provide the preclinical framework supporting evaluation of CBS9106 in clinical trials to improve patient outcome in MM. No significant financial relationships to disclose.


1996 ◽  
Vol 28 (6) ◽  
pp. 513-519 ◽  
Author(s):  
G. PRUNERI ◽  
L. PIGNATARO ◽  
N.S. FRACCHIOLLA ◽  
S. FERRERO ◽  
P. CAPACCIO ◽  
...  

Endocrinology ◽  
2000 ◽  
Vol 141 (12) ◽  
pp. 4357-4364 ◽  
Author(s):  
Jennifer L. Sanders ◽  
Naibedya Chattopadhyay ◽  
Olga Kifor ◽  
Toru Yamaguchi ◽  
Robert R. Butters ◽  
...  

Abstract Metastasis of breast cancer to bone occurs with advanced disease and produces substantial morbidity. Secretion of PTH-related peptide (PTHrP) from breast cancer cells is thought to play a key role in osteolytic metastases and is increased by transforming growth factor-β (TGFβ), which is released from resorbed bone. Elevated extracellular calcium (Cao2+) also stimulates PTHrP secretion from various normal and malignant cells, an action that could potentially be mediated by the Cao2+-sensing receptor (CaR) originally cloned from the parathyroid gland. Indeed, we previously showed that both normal breast ductal epithelial cells and primary breast cancers express the CaR. In this study we investigated whether the MCF-7 and MDA-MB-231 human breast cancer cell lines express the CaR and whether CaR agonists modulate PTHrP secretion. Northern blot analysis and RT-PCR revealed bona fide CaR transcripts, and immunocytochemistry and Western analysis with a specific anti-CaR antiserum demonstrated CaR protein expression in both breast cancer cell lines. Furthermore, elevated Cao2+ and the polycationic CaR agonists, neomycin and spermine, stimulated PTHrP secretion dose dependently, with maximal, 2.1- to 2.3-fold stimulation. In addition, pretreatment of MDA-MB-231 cells overnight with TGFβ1 (0.2, 1, or 5 ng/ml) augmented both basal and high Cao2+-stimulated PTHrP secretion. Thus, in PTHrP-secreting breast cancers metastatic to bone, the CaR could potentially participate in a vicious cycle in which PTHrP-induced bone resorption raises the levels of Cao2+ and TGFβ within the bony microenvironment, which then act in concert to evoke further PTHrP release and worsening osteolysis.


Author(s):  
Priyankar Maji ◽  
Ranodeep Chatterjee ◽  
Biswa P. Choudhury ◽  
Urmi Chatterji ◽  
Jhuma Ganguly

Objective: This study was designed to analyze the combinatorial chemotherapeutic effect of temozolomide (TMZ), the most common drug in glioblastoma treatment and a purified carbohydrate (Fr-II) from the edible mushroom Pleurotus florida, on human glioblastoma cell lines.Methods: Fr-II was purified by size-exclusion chromatography and characterised by different mass spectroscopy analysis. Human glioblastoma cells were treated with TMZ, Fr-II, and combination of TMZ and Fr-II. Cell cytotoxicity was measured by MTT assay, cell cycle phase distribution was determined by cell cycle analysis and followed by the relative p53 protein expression was analyzed by western blot analysis.Results: Chemical analysis of Fr-II confirmed the glycosidically linked two units of glucose with terminally attached mannitol with mass of 506 Da. Fr-II treatment exhibited cytotoxicity in both the cell lines in a dose-dependent manner with most effective dose at 200µg/ml. When Fr-II (200µg/ml) was combined with a dose range of TMZ it showed a more cellular cytotoxicity compared to the cytotoxicity of TMZ alone with most oppressive combinatorial dose at 400µM (TMZ)+200µg/ml (Fr-II). In compliance, with the above results, both cell lines showed a 10% increase in no. of cells (p<0.05) in G2/M phase indicating an arrest of cell cycle and increased p53 protein expression (p<0.05) at the combinatorial dose than TMZ alone at 400µM, but Fr-II alone didn’t show any cell cycle arrest nor did it show increased p53 expression.Conclusion: Therefore it confirms that Fr-II synergizes with TMZ to significantly intensify its anti-proliferative properties, thereby emerging as an effective element for combinatorial treatment of glioblastoma.


1996 ◽  
Vol 49 (5) ◽  
pp. M278-M282 ◽  
Author(s):  
M Tzardi ◽  
C. Kouvidou ◽  
I Panayiotides ◽  
K Stefanaki ◽  
D Rontogianni ◽  
...  

2003 ◽  
Vol 2 (3) ◽  
pp. 223-235 ◽  
Author(s):  
Tatyana M. Timiryasova ◽  
Daila S. Gridley ◽  
Bing Chen ◽  
Melba L. Andres ◽  
Radha Dutta-Roy ◽  
...  

The overall goal of this study was to analyze the effect and mechanism of radiation in combination with vaccinia viruses (VV) carrying the p53 gene against glioma. Comparison of two alternative treatments of cultured C6 (p53+) and 9L (p53−) rat glioma cells showed significantly reduced survival for both cell lines, especially 9L, when radiation was applied prior to virus versus radiation alone. High p53 protein expression mediated by VV-TK-p53 was measured in infected cells. Single modality treatment of C6 cells with psoralen and UV (PUV)-inactivated VV-TK-p53 (PUV-VV-TK-53) or radiation significantly decreased survival compared with PUV-inactivated L-15 (PUV-L-15) control virus. However, no difference was observed between radiation and combination treatments of C6 cells. In contrast, radiation followed by PUV-VV-TK-53 resulted in dramatic reduction of 9L cell viability, compared to single modality treatment. Flow cytometry analysis of Annexin-V-stained 9L cells showed that radiation and PUV-VV-TK-53 caused a significant decrease in live cells (17.2%) as compared to other treatments and control (61.6–98.3%). Apoptosis was observed in 37.2% of cells, while the range was 0.7–7.8% in other treatment groups; maximal p53 level was measured on day 7 post-infection. In athymic mice bearing C6 tumors, VV-TK-53 plus radiation in both single and multiple therapies resulted in significantly smaller tumors by day 30 compared to the agents given only once. Immunohistochemical analysis of tumor sections demonstrated p53 protein expression over 20 days after VV-TK-53 treatment. Analysis of blood and spleen cells of mice given multiple combination treatments showed significant splenomegaly, leukocytosis, and increased DNA synthesis and response to mitogen. Multiple combination treatments were also associated with significantly elevated natural killer and B cells in the spleen. There were no overt toxicities, although depression in red blood cell and thrombocyte parameters was noted. Collectively, the data demonstrate that radiation significantly improves the efficacy of VV-mediated tumor suppressor p53 therapy and may be a promising strategy for glioma treatment. Furthermore, the results support the conclusion that the mechanisms underlying the enhanced anti-tumor effect of combination treatment include apoptosis/necrosis and upregulation of innate immune defenses.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 619-619
Author(s):  
A. H. Al-Hajj ◽  
M. V. Yezhelyev ◽  
T. Liu ◽  
R. M. O’Regan

619 Background: Conventional methods of detecting breast cancer biomarkers are hampered by a lack of adequate quantification and/or an inability to detect multiple targets on small quantities of tissue. We have previously demonstrated that estrogen receptor (ER), progesterone receptor (PR) and HER2/neu (HER2) can be detected and quantified simultaneously using antibodies (Abs) directly conjugated to nanoparticles, called quantum dots (QDs), on single breast cancer sections (ASCO 2005). We have expanded our assay to use multicolored QDs conjugated directly to Abs (QD-Abs) to detect and quantify simultaneously ER, PR, and HER2, along with 3 putative biomarkers, epidermal growth factor receptor (EGFR), mammalian target of Rapamycin (mTOR), and insulin-like growth factor receptor (IGFR), in breast cancer cell lines and human breast cancers. Methods: We used multicolored QDs directly conjugated to primary Abs to detect the 6 proteins in breast cancer cell lines (MCF-7, BT474, MDA-231) and single sections of human breast cancers. The 6 proteins were quantified using spectral separation microscopy, and compared to Western blotting. Results: We detected all 6 proteins simultaneously using QD-Abs in breast cancer cell lines and breast tumors. Using hyper-spectral imaging and wavelength-resolved spectroscopy, we separated all 6 fluorescent signals, and quantified the expression of each protein detected using QD-Abs. Quantification of the biomarkers showed good correlation with Western blotting. Conclusions: These results are proof of principle that 6 proteins can be simultaneously quantified using QD-Abs in single breast cancer sections. The use of multiplex QDs offers a novel method of determining the proteome of an individual breast cancer on single breast cancer sections. With the expanding use of targeted therapies in breast cancer, the ability to detect multiple proteins on small breast cancer specimens using QD-Abs, could allow not only the accurate selection of therapy, but a unique method of determining the activity of specific targeted agents. No significant financial relationships to disclose.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14098-e14098 ◽  
Author(s):  
Naoise C Synnott ◽  
Alyson M. Murray ◽  
Norma O'Donovan ◽  
Michael J. Duffy ◽  
John Crown

e14098 Background: TP53 is the most frequently mutated gene in triple-negative breast cancer, being present in approximately 80% of cases. APR-246 is a novel anticancer drug that acts by reactivating the mutant p53 protein, thereby converting it to a form with wild-type properties. Previously, we showed that APR-246 had antiproliferative, anti-migratory and pro-apoptotic activities in a panel of 23 breast cancer cell lines, including triple-negative (TN) cell lines. The aim of this study was to investigate if combined treatment with APR-246 and different cytotoxic agents resulted in enhanced growth inhibition. Methods: Cell viability was determined using the MTT assay. Combination index (CI) values were calculated using Calcusyn software, based on the Chou-Talalay method. Apoptosis was detected using Annexin V-FITC Apoptosis Detection Kit followed by FACs analysis. Results: Highly synergistic cell growth inhibition was found when APR-246 was combined with eribulin (Eisai Ltd.) in 6 different p53-mutated cell lines (mean CI values range from 0.38 to 0.77). In contrast, enhanced growth inhibition was not found using this combination in the 3 p53-WT cell lines investigated (mean CI values ranged from 1.13 to 2.9). Overall, p53 mutated cell lines had a significantly lower CI values than p53 wild-type cells (p = 0.008). In all the 4 p53-mutated cell lines investigated, a significant increase in apoptosis was also seen when APR-246 was combined with eribulin. This enhanced apoptosis appeared to result from increased mRNA expression of the pro-apoptotic factors PUMA and NOXA by the drug combination compared to either compound alone. In contrast to our findings with eribulin, combined treatment with APR-246 plus docetaxel, doxorubicin, cisplatin or carboplatin was cell line-dependent. Thus, docetaxel plus APR-246 was synergistic in 1/6 cell lines, while doxorubicin, cisplatin or carboplatin plus APR-246 was synergistic in 3/6 cell lines. Conclusions: Clinical trials investigating the combination of APR-246 and eribulin should be considered in patients with a p53 mutation such as triple-negative breast cancer.


2012 ◽  
Vol 33 (3) ◽  
pp. 557-570 ◽  
Author(s):  
Benjamin J. Shields ◽  
Florian Wiede ◽  
Esteban N. Gurzov ◽  
Kenneth Wee ◽  
Christine Hauser ◽  
...  

ABSTRACTTyrosine phosphorylation-dependent signaling, as mediated by members of the epidermal growth factor receptor (EGFR) family (ErbB1 to -4) of protein tyrosine kinases (PTKs), Src family PTKs (SFKs), and cytokines such as interleukin-6 (IL-6) that signal via signal transducer and activator of transcription 3 (STAT3), is critical to the development and progression of many human breast cancers. EGFR, SFKs, and STAT3 can serve as substrates for the protein tyrosine phosphatase TCPTP (PTPN2). Here we report that TCPTP protein levels are decreased in a subset of breast cancer cell linesin vitroand that TCPTP protein is absent in a large proportion of “triple-negative” primary human breast cancers. Homozygous TCPTP deficiency in murine mammary fat padsin vivois associated with elevated SFK and STAT3 signaling, whereas TCPTP deficiency in human breast cancer cell lines enhances SFK and STAT3 signaling. On the other hand, TCPTP reconstitution in human breast cancer cell lines severely impaired cell proliferation and suppressed anchorage-independent growthin vitroand xenograft growthin vivo. These studies establish TCPTP's potential to serve as a tumor suppressor in human breast cancer.


2020 ◽  
Vol 18 (1) ◽  
pp. 559-564
Author(s):  
Apris A. Adu ◽  
I. Ketut Sudiana ◽  
Santi Martini

AbstractThis research was conducted using beef extracted from Kupang (se’i meat), Indonesia. Se’i meat is a locally found food where the preferred mode of preparation is smoking the beef with the preservation using nitrites. Nitrite can cause health-related problems such as cancer. This research was carried out using a true experimental method with a complete randomized design with the aim of analyzing the effect of meat administration on the expression of wild-type p53 protein in colon cells of Balb/c mice as an indicator of carcinogenesis. The measurement of p53 is to observe the increase in the-over-capacity of p53 expression in the colon cell as a result of decrease in wild-type protein p53. This research provides scientific information about the effect of giving se’i meat on the expression of wild-type p53 in cells of Balb/c mice as an indicator of carcinogenesis. A total of 36 male mice of Balb/c strain weighing 23.8 g were divided into four groups classified as samples (P1, P2 and P3) and control (K), which were taken from modern and home industries in the city of Kupang. The results showed that consumption of nitrite-preserved beef se’i (traditional smoked meat) increased the p53 protein expression in colon cells of Balb/c strain male mice, and the least significant difference test also showed that there were differences in wild-type p53 protein expression among the four groups: P1 (mice that have been given the standard food, drinking water and se’i meat that contains no nitrite) has an average of 142 expressions, which is higher than that of P3 (mice that have been given the standard food, drinking water and se’i meat containing nitrite which come from the home industry) which has an average of 106.55 expressions and is higher than that of K (mice that have been given the standard food and drinking water) which has the total average of expression of about 78.11 expressions. The benefit of this research is to gain the scientific information about the effect of giving smoked meat on the expression of wild-type p53 in colon cells of Balb/c mice as a carcinogenic indicator.


Sign in / Sign up

Export Citation Format

Share Document