scholarly journals Phorbol ester-induced scattering of HT-29 human intestinal cancer cells is associated with down-modulation of E-cadherin

1993 ◽  
Vol 106 (2) ◽  
pp. 513-521
Author(s):  
M. Fabre ◽  
A. Garcia de Herreros

The effects of tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) on the growth characteristics of the colon cancer cell line HT-29 M6 were studied. TPA induced the scattering of proliferative HT-29 M6 cells: in the presence of the phorbol ester, HT-29 M6 colonies scattered and the cells acquired a flatter aspect with diminished cell-cell contacts. This effect of TPA required a persistent activation of PK-C and was accompanied by a slight decrease (30%) in the growth rate. Modifications by TPA of two scattering associated properties of these cells were also detected: TPA decreased cell-to-cell aggregation and enhanced the cellular attachment to matrix substrata (collagen, laminin). The decrease in cell-to-cell adhesion was correlated with a loss of cellular E-cadherin as evidenced by immunofluorescence or immunoblotting with a specific monoclonal antibody. Cell scattering was dependent on the extracellular concentration of Ca2+; an increase from 1.6 to 10 mM in the concentration of this ion completely blocked the morphological effects of TPA as well as its action on cell aggregation. This high concentration of Ca2+ also prevented the down modulation of E-cadherin as determined by immunofluorescence. However, the TPA-induced increase in cell attachment to the matrix was not affected by high calcium. These findings support the importance of altered cell-cell adhesion in the process of scattering and provide a good system for the study of down modulation of E-cadherin, a protein involved in the control of cell growth, differentiation and invasion of epithelial cells.

2001 ◽  
Vol 12 (7) ◽  
pp. 1983-1993 ◽  
Author(s):  
Sun-Ho Kee ◽  
Peter M. Steinert

The association of the cytoskeleton with the cadherin–catenin complex is essential for strong cell-cell adhesion in epithelial cells. In this study, we have investigated the effect of microtubule organization on cell-cell adhesion in differentiating keratinocytes. When microtubules of normal human epidermal keratinocytes (NHEKs) grown in low calcium media (0.05 mM) were disrupted with nocodazole or colcemid, cell-cell adhesion was induced through relocalization of the E-cadherin–catenin–actin complex to the cell periphery. This was accompanied by actin polymerization. Also, it was found that microtubule disruption-induced cell-cell adhesion was significantly reduced in more advanced differentiated keratinocytes. For example, when NHEK cells cultured under high calcium (1.2 mM) for 8 d and then in low calcium for 1 d were treated with nocodazole, there was no induction of cell-cell adhesion. Also long-term treatment of a phorbol ester for 48 h inhibited nocodazole-induced cell-cell adhesion of NHEK. Furthermore, this nocodazole-induced cell-cell adhesion could be observed in squamous cancer cell lines (A431 and SCC-5, -9, and -25) under low calcium condition, but not in the keratinocyte cell lines derived from normal epidermis (HaCaT, RHEK). On the other hand, HaCaT cells continuously cultivated in low calcium media regained a less differentiated phenotype such as decreased expression of cytokeratin 10, and increased K5; these changes were accompanied with inducibility of cell-cell adhesion by nocodazole. Together, our results suggest that microtubule disruption can induce the cell-cell adhesion via activation of endogenous E-cadherin in non- or early differentiating keratinocytes. However, this is no longer possible in advanced terminally differentiating keratinocytes, possibly due to irreversible changes effected by cell envelope barrier formation.


2000 ◽  
Vol 278 (5) ◽  
pp. F758-F768 ◽  
Author(s):  
Eoin Bergin ◽  
Jerrold S. Levine ◽  
Jason S. Koh ◽  
Wilfred Lieberthal

Adhesion of epithelial cells to matrix is known to inhibit apoptosis. However, the role of cell-cell adhesion in mediating cell survival remains uncertain. Primary cultures of mouse proximal tubular (MPT) cells were used to examine the role of cell-cell adhesion in promoting survival. When MPT cells were deprived of both cell-matrix and cell-cell adhesion, they died by apoptosis. However, when incubated in agarose-coated culture dishes (to prevent cell-matrix adhesion) and at high cell density (to allow cell-cell interactions), MPT cells adhered to one another and remained viable. Expression of E-cadherin among suspended, aggregating cells increased with time. A His-Ala-Val (HAV)-containing peptide that inhibits homophilic E-cadherin binding prevented cell-cell aggregation and promoted apoptosis of MPT cells in suspension. By contrast, inhibition of potential β1-integrin-mediated interactions between cells in suspension did not prevent either aggregation or survival of suspended cells. Aggregation of cells in suspension activated phosphatidylinositol 3-kinase (PI3K), an event that was markedly reduced by the presence of the HAV peptide. LY-294002, an inhibitor of PI3K, also inhibited survival of suspended cells. In summary, we provide novel evidence that MPT cells, when deprived of normal cell-matrix interactions, can adhere to one another in a cadherin-dependent fashion and remain viable. Survival of aggregated cells depends on activation of PI3K.


1995 ◽  
Vol 15 (3) ◽  
pp. 1175-1181 ◽  
Author(s):  
J Kawanishi ◽  
J Kato ◽  
K Sasaki ◽  
S Fujii ◽  
N Watanabe ◽  
...  

Detachment of cell-cell adhesion is indispensable for the first step of invasion and metastasis of cancer. This mechanism is frequently associated with the impairment of either E-cadherin expression or function. However, mechanisms of such abnormalities have not been fully elucidated. In this study, we demonstrated that the function of E-cadherin was completely abolished in the human gastric cancer cell line HSC-39, despite the high expression of E-cadherin, because of mutations in one of the E-cadherin-associated cytoplasmic proteins, beta-catenin. Although immunofluorescence staining of HSC-39 cells by using an anti-E-cadherin antibody (HECD-1) revealed the strong and uniform expression of E-cadherin on the cell surface, cell compaction and cell aggregation were not observed in this cell. Western blotting (immunoblotting) using HECD-1 exhibited a 120-kDa band which is equivalent to normal E-cadherin. Northern (RNA) blotting demonstrated a 4.7-kb band, the same as mature E-cadherin mRNA. Immunoprecipitation of metabolically labeled proteins with HECD-1 revealed three bands corresponding to E-cadherin, alpha-catenin, and gamma-catenin and a 79-kDa band which was apparently smaller than that of normal beta-catenin, indicating truncated beta-catenin. The 79-kDa band was immunologically identified as beta-catenin by using immunoblotting with anti-beta-catenin antibodies. Examination of beta-catenin mRNA by the reverse transcriptase-PCR method revealed a transcript which was shorter than that of normal beta-catenin. The sequencing of PCR product for beta-catenin confirmed deletion in 321 bases from nucleotides +82 to +402. Southern blotting of beta-catenin DNA disclosed mutation at the genomic level. Expression vectors of Beta-catenin were introduced into HSC-39 cells by transfection. In the obtained transfectants, E-cadherin-dependent cell-cell adhesiveness was recovered, as revealed by cell compaction, cell aggregation, and immunoflourescence staining. From these results, it was concluded that in HSC-39 cells, impaired cell-cell adhesion is due to mutations in beta-catenin which results in the dysfunction of E-cadherin.


2005 ◽  
Vol 173 (4S) ◽  
pp. 170-170
Author(s):  
Maxine G. Tran ◽  
Miguel A. Esteban ◽  
Peter D. Hill ◽  
Ashish Chandra ◽  
Tim S. O'Brien ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 1-17
Author(s):  
Sarah Alsharif ◽  
Pooja Sharma ◽  
Karina Bursch ◽  
Rachel Milliken ◽  
Van Lam ◽  
...  

2017 ◽  
Vol 114 (29) ◽  
pp. E5835-E5844 ◽  
Author(s):  
Caitlin Collins ◽  
Aleksandra K. Denisin ◽  
Beth L. Pruitt ◽  
W. James Nelson

Mechanical cues are sensed and transduced by cell adhesion complexes to regulate diverse cell behaviors. Extracellular matrix (ECM) rigidity sensing by integrin adhesions has been well studied, but rigidity sensing by cadherins during cell adhesion is largely unexplored. Using mechanically tunable polyacrylamide (PA) gels functionalized with the extracellular domain of E-cadherin (Ecad-Fc), we showed that E-cadherin–dependent epithelial cell adhesion was sensitive to changes in PA gel elastic modulus that produced striking differences in cell morphology, actin organization, and membrane dynamics. Traction force microscopy (TFM) revealed that cells produced the greatest tractions at the cell periphery, where distinct types of actin-based membrane protrusions formed. Cells responded to substrate rigidity by reorganizing the distribution and size of high-traction-stress regions at the cell periphery. Differences in adhesion and protrusion dynamics were mediated by balancing the activities of specific signaling molecules. Cell adhesion to a 30-kPa Ecad-Fc PA gel required Cdc42- and formin-dependent filopodia formation, whereas adhesion to a 60-kPa Ecad-Fc PA gel induced Arp2/3-dependent lamellipodial protrusions. A quantitative 3D cell–cell adhesion assay and live cell imaging of cell–cell contact formation revealed that inhibition of Cdc42, formin, and Arp2/3 activities blocked the initiation, but not the maintenance of established cell–cell adhesions. These results indicate that the same signaling molecules activated by E-cadherin rigidity sensing on PA gels contribute to actin organization and membrane dynamics during cell–cell adhesion. We hypothesize that a transition in the stiffness of E-cadherin homotypic interactions regulates actin and membrane dynamics during initial stages of cell–cell adhesion.


2007 ◽  
Vol 178 (2) ◽  
pp. 323-335 ◽  
Author(s):  
Lene N. Nejsum ◽  
W. James Nelson

Mechanisms involved in maintaining plasma membrane domains in fully polarized epithelial cells are known, but when and how directed protein sorting and trafficking occur to initiate cell surface polarity are not. We tested whether establishment of the basolateral membrane domain and E-cadherin–mediated epithelial cell–cell adhesion are mechanistically linked. We show that the basolateral membrane aquaporin (AQP)-3, but not the equivalent apical membrane AQP5, is delivered in post-Golgi structures directly to forming cell–cell contacts where it co-accumulates precisely with E-cadherin. Functional disruption of individual components of a putative lateral targeting patch (e.g., microtubules, the exocyst, and soluble N-ethylmaleimide–sensitive factor attachment protein receptors) did not inhibit cell–cell adhesion or colocalization of the other components with E-cadherin, but each blocked AQP3 delivery to forming cell–cell contacts. Thus, components of the lateral targeting patch localize independently of each other to cell–cell contacts but collectively function as a holocomplex to specify basolateral vesicle delivery to nascent cell–cell contacts and immediately initiate cell surface polarity.


2015 ◽  
Vol 210 (7) ◽  
pp. 1065-1074 ◽  
Author(s):  
Julie M. Bianchini ◽  
Khameeka N. Kitt ◽  
Martijn Gloerich ◽  
Sabine Pokutta ◽  
William I. Weis ◽  
...  

As part of the E-cadherin–β-catenin–αE-catenin complex (CCC), mammalian αE-catenin binds F-actin weakly in the absence of force, whereas cytosolic αE-catenin forms a homodimer that interacts more strongly with F-actin. It has been concluded that cytosolic αE-catenin homodimer is not important for intercellular adhesion because E-cadherin/αE-catenin chimeras thought to mimic the CCC are sufficient to induce cell–cell adhesion. We show that, unlike αE-catenin in the CCC, these chimeras homodimerize, bind F-actin strongly, and inhibit the Arp2/3 complex, all of which are properties of the αE-catenin homodimer. To more accurately mimic the junctional CCC, we designed a constitutively monomeric chimera, and show that E-cadherin–dependent cell adhesion is weaker in cells expressing this chimera compared with cells in which αE-catenin homodimers are present. Our results demonstrate that E-cadherin/αE-catenin chimeras used previously do not mimic αE-catenin in the native CCC, and imply that both CCC-bound monomer and cytosolic homodimer αE-catenin are required for strong cell–cell adhesion.


Sign in / Sign up

Export Citation Format

Share Document