Characterization of a 5.4 kb cDNA fragment from the Z-line region of rabbit cardiac titin reveals phosphorylation sites for proline-directed kinases

1995 ◽  
Vol 108 (9) ◽  
pp. 3029-3037 ◽  
Author(s):  
M.G. Sebestyen ◽  
J.A. Wolff ◽  
M.L. Greaser

Titin is an approximately 3 MDa protein that spans from the M- to the Z-line in the sarcomeres of vertebrate striated muscle. The protein is presumably encoded by unusually large mRNAs of 70–80 kb. Although titin has been studied by several laboratories, barely more than half of the cDNA sequence (approximately 45 kb) has been published, most of it obtained from the A-band and M-line region (corresponding to the C-terminal half of the molecule). A special cDNA library was constructed using size selected total RNA from adult rabbit cardiac muscle in order to obtain sequence data from titin's unknown N-terminal region. A monoclonal antibody (T12), which binds to an epitope close to the Z-line, was used to identify initial cDNA clones. Additional overlapping clones were isolated and sequenced yielding a 5.4 kb contig. The encoded polypeptide contains 16 Type-II domains and four unique intervening segments. Polyclonal sera, raised against an expressed protein fragment encoded by the 5′ end of the contig, strongly stained the Z-line of myofibrils of different species. However, the sequence of this fragment is 83% identical at the amino acid level with the previously reported C-terminal (i.e. M-line) end of chicken embryonic skeletal muscle titin. The expressed protein fragment could be phosphorylated in vitro by embryonic skeletal muscle extract and by the purified proline-directed kinase ERK1, presumably at the xSPxR recognition sites located in the first interdomain segment.

1984 ◽  
Vol 62 (11) ◽  
pp. 2188-2191 ◽  
Author(s):  
Louis J. Guillette Jr. ◽  
David A. Dickey

Acetylcholine-induced in vitro contractions of the puboischiotibialis muscle was potentiated by pretreatment with prostaglandin F2α (1.5 ng/mL). This phenomenon was exhibited by both sexually active male and female Crotaphytus collaris collaris and the degree of response was similar in both sexes. However, females exhibited a greater mean (±SE) percent increase as well as more variation than males (males, 54.6 ± 10.9%; females, 114.7 ± 61.4%). These data suggest that prostaglandin F2α plays a role in the control of striated muscle function in lizards. Moreover, prostaglandin potentiation of muscle contraction may be important during the reptilian reproductive cycle, particularly at the time of oviposition.


Parasitology ◽  
1996 ◽  
Vol 113 (5) ◽  
pp. 439-448 ◽  
Author(s):  
P. P. J. Dunn ◽  
J. M. Bumstead ◽  
F. M. Tomley

SUMMARYWe have isolated and sequenced cDNA clones fromEimeria tenellaandEimeria maximawhich encode proteins that share homology with a recently described family of calmodulin-domain protein kinases. The primary sequence data show that each of the protein kinases can be divided into 2 main functional domains – an amino-terminal catalytic domain typical of serine/threonine protein kinases and a carboxy-terminal domain homologous to calmodulin, which is capable of binding calcium ions at 4 ‘EF-hand’ motifs. Expression of theE. tenellacalmodulin-domain protein kinase (EtCDPK) increased towards the end of oocyst sporulation, as judged by Northern and Western blotting, and indirect immunofluorescent antibody labelling showed that within a few minutes of adding sporozoites to target host cells inin vitroculture EtCDPK was found to be specifically associated with a filament-like structure that converges at the apical end of the parasite. Once the parasite entered the host cell EtCDPK appeared to be left on the host cell membrane at the point of entry, indicating a brief yet specific role for this molecule in the invasion of host cells byE. tenella.


1981 ◽  
Vol 89 (2) ◽  
pp. 185-193 ◽  
Author(s):  
H M Eppenberger ◽  
J C Perriard ◽  
U B Rosenberg ◽  
E E Strehler

The tissue specificity of chicken 165,000 M-protein, tentatively names "myomesin", a tightly bound component of the M-line region of adult skeletal and heart myofibrils, was investigated by immunological techniques. Besides skeletal and heart muscle, only thymus (known to contain myogenic cells) was found to contain myomesin. No myomesin could however, be detected in smooth muscle or any other tissue tested. This result was confirmed in vitro on several cultured embryonic cell types. Only skeletal and heart muscle cells, but not smooth muscle or fibroblast cells, showed the presence of myomesin. When the occurrence and the distribution of myomesin during differentiation of breast muscle cells in culture were studied by the indirect immunofluorescence technique, this protein was first detected in postmitotic, nonproliferating myoblasts in a regular pattern of fluorescent cross-striations. In electron micrographs of sections through young myotubes, it could be shown to be present within the forming H-zones of nascent myofibrils. In large myotubes the typical striation pattern in the M-line region of the myofibrils was observed. Synthesis of myomesin measured by incorporation of [35S]methionine into immunoprecipitable protein of differentiating cells increased sharply after approximately 48 h in culture, i.e., at the time when the major myofibrillar proteins are accumulated. No significant amounts of myomesin were, however, found in cells prevented from undergoing normal myogenesis by 5'-bromodeoxyuridine. The results indicate that myomesin (a) is a myofibrillar protein specific for cross-striated muscle, (b) represents a highly specific marker for cross-striated muscle cell differentiation and (c) might play an important role in myofibril assembly and/or maintenance.


Author(s):  
S.L. White ◽  
C.B. Jensen ◽  
D.D. Giera ◽  
D.A. Laska ◽  
M.N. Novilla ◽  
...  

In vitro exposure to LY237216 (9-Deoxo-11-deoxy-9,11-{imino[2-(2-methoxyethoxy)ethylidene]-oxy}-(9S)-erythromycin), a macrolide antibiotic, was found to induce cytoplasmic vacuolation in L6 skeletal muscle myoblast cultures (White, S.L., unpubl). The present study was done to determine, by autoradiographic quantitative analysis, the subcellular distribution of 3H-LY237216 in L6 cells.L6 cells (ATCC, CRL 1458) were cultured to confluency on polycarbonate membrane filters (Millipore Corp., Bedford, MA) in M-199 medium (GIBCO® Labs) with 10% fetal bovine serum. The cells were exposed from the apical surface for 1-hour to unlabelled-compound (0 μCi/ml) or 50 (μCi/ml of 3H-LY237216 at a compound concentration of 0.25 mg/ml. Following a rapid rinse in compound-free growth medium, the cells were slam-frozen against a liquid nitrogen cooled, polished copper block in a CF-100 cryofixation unit (LifeCell Corp., The Woodlands, TX). Specimens were dried in the MDD-C Molecular Distillation Drier (LifeCell Corp.), vapor osmicated and embedded in Spurrs low viscosity resin. Ultrathin sections collected on formvar coated stainless steel grids were counter-stained, then individually mounted on corks. A monolayer of Ilford L4 nuclear emulsion (Polysciences, Inc., Warrington, PA) was placed on the sections, utilizing a modified “loop method”. The emulsions were exposed for 7-weeks in a light-tight box at 4°C. Autoradiographs were developed in Microdol-X developer and examined on a Philips EM410LS transmission electron microscope. Quantitative analysis of compound localization employed the point and circle approach of Williams; incorporating the probability circle method of Salpeter and McHenry.


PLoS ONE ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. e0232081 ◽  
Author(s):  
Anna Urciuolo ◽  
Elena Serena ◽  
Rusha Ghua ◽  
Susi Zatti ◽  
Monica Giomo ◽  
...  

Author(s):  
Selva Bilge ◽  
Emre Ergene ◽  
Ebru Talak ◽  
Seyda Gokyer ◽  
Yusuf Osman Donar ◽  
...  

AbstractSkeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.


1960 ◽  
Vol 235 (10) ◽  
pp. 2797-2800
Author(s):  
Patricia Z. Thomas ◽  
Enrico Forchielli ◽  
Ralph I. Dorfman

Sign in / Sign up

Export Citation Format

Share Document