Expression of a dominant negative cadherin mutant inhibits proliferation and stimulates terminal differentiation of human epidermal keratinocytes

1996 ◽  
Vol 109 (13) ◽  
pp. 3013-3023 ◽  
Author(s):  
A.J. Zhu ◽  
F.M. Watt

Cell adhesion molecules are not only required for maintenance of tissue integrity, but also regulate many aspects of cell behaviour, including growth and differentiation. While the regulatory functions of integrin extracellular matrix receptors in keratinocytes are well established, such functions have not been investigated for the primary receptors that mediate keratinocyte intercellular adhesion, the cadherins. To examine cadherin function in normal human epidermal keratinocytes we used a retroviral vector to introduce a dominant negative E-cadherin mutant, consisting of the extracellular domain of H-2Kd and the transmembrane and cytoplasmic domains of E-cadherin. As a control a vector containing the same construct, but with the catenin binding site destroyed, was prepared. High levels of expression of the constructs were achieved; the dominant negative mutant, but not the control, formed complexes with alpha-, beta- and gamma-catenin. In cells expressing the dominant negative mutant there was a 5-fold decrease in the level of endogenous cadherins and a 3-fold increase in the level of beta-catenin. Cell-cell adhesion and stratification were inhibited by the dominant negative mutant and desmosome formation was reduced. Expression of the mutant resulted in reduced levels of the alpha 2 beta 1 and alpha 3 beta 1 integrins and increased cell motility, providing further evidence for cross-talk between cadherins and the beta 1 integrins. In view of the widely documented loss of E-cadherin in keratinocyte tumours it was surprising that the dominant negative mutant had an inhibitory effect on keratinocyte proliferation and stimulated terminal differentiation even under conditions in which intercellular adhesion was prevented. These results establish a role for cadherins in regulating keratinocyte growth and differentiation and raise interesting questions as to the relative importance of cell adhesion-dependent and -independent mechanisms.

2003 ◽  
Vol 14 (4) ◽  
pp. 1597-1609 ◽  
Author(s):  
Yoshinari Tanaka ◽  
Hiroyuki Nakanishi ◽  
Shigeki Kakunaga ◽  
Noriko Okabe ◽  
Tomomi Kawakatsu ◽  
...  

E-Cadherin is a Ca2+-dependent cell-cell adhesion molecule at adherens junctions (AJs) of epithelial cells. A fragment of N-cadherin lacking its extracellular region serves as a dominant negative mutant (DN) and inhibits cell-cell adhesion activity of E-cadherin, but its mode of action remains to be elucidated. Nectin is a Ca2+-independent immunoglobulin-like cell-cell adhesion molecule at AJs and is associated with E-cadherin through their respective peripheral membrane proteins, afadin and catenins, which connect nectin and cadherin to the actin cytoskeleton, respectively. We showed here that overexpression of nectin capable of binding afadin, but not a mutant incapable of binding afadin, reduced the inhibitory effect of N-cadherin DN on the cell-cell adhesion activity of E-cadherin in keratinocytes. Overexpressed nectin recruited N-cadherin DN to the nectin-based cell-cell adhesion sites in an afadin-dependent manner. Moreover, overexpression of nectin enhanced the E-cadherin–based cell-cell adhesion activity. These results suggest that N-cadherin DN competitively inhibits the association of the endogenous nectin-afadin system with the endogenous E-cadherin-catenin system and thereby reduces the cell-cell adhesion activity of E-cadherin. Thus, nectin plays a role in the formation of E-cadherin–based AJs in keratinocytes.


Development ◽  
1999 ◽  
Vol 126 (10) ◽  
pp. 2285-2298 ◽  
Author(s):  
A.J. Zhu ◽  
F.M. Watt

We found that cultured human keratinocytes with high proliferative potential, the putative epidermal stem cells, expressed a higher level of noncadherin-associated beta-catenin than populations enriched for keratinocytes of lower proliferative potential. To investigate the physiological significance of this, a series of beta-catenin constructs was introduced into keratinocytes via retroviral infection. Full-length beta-catenin and a mutant containing only nine armadillo repeats had little effect on proliferative potential in culture, the full-length protein being rapidly degraded. However, expression of stabilised, N-terminally truncated beta-catenin increased the proportion of putative stem cells to almost 90% of the proliferative population in vitro without inducing malignant transformation, and relieved the differentiation stimulatory effect of overexpressing the E-cadherin cytoplasmic domain. Conversely, beta-catenin lacking armadillo repeats acted as a dominant negative mutant and stimulated exit from the stem cell compartment in culture. The positive and negative effects of the beta-catenin mutants on proliferative potential were independent of effects on cell-cycle kinetics, overt terminal differentiation or intercellular adhesion, and correlated with stimulation or inhibition of transactivation of a TCF/LEF reporter in basal keratinocytes. We conclude that the elevated level of cytoplasmic beta-catenin in those keratinocytes with characteristics of epidermal stem cells contributes to their high proliferative potential.


2005 ◽  
Vol 25 (20) ◽  
pp. 9138-9150 ◽  
Author(s):  
Henriette Andersen ◽  
Jakob Mejlvang ◽  
Shaukat Mahmood ◽  
Irina Gromova ◽  
Pavel Gromov ◽  
...  

ABSTRACT The invasion suppressor protein, E-cadherin, plays a central role in epithelial cell-cell adhesion. Loss of E-cadherin expression or function in various tumors of epithelial origin is associated with a more invasive phenotype. In this study, by expressing a dominant-negative mutant of E-cadherin (Ec1WVM) in A431 cells, we demonstrated that specific inhibition of E-cadherin-dependent cell-cell adhesion led to the genetic reprogramming of tumor cells. In particular, prolonged inhibition of cell-cell adhesion activated expression of vimentin and repressed cytokeratins, suggesting that the effects of Ec1WVM can be classified as epithelial-mesenchymal transition. Both short-term and prolonged expression of Ec1WVM resulted in morphological transformation and increased cell migration though to different extents. Short-term expression of Ec1WVM up-regulated two AP-1 family members, c-jun and fra-1, but was insufficient to induce complete mesenchymal transition. AP-1 activity induced by the short-term expression of Ec1WVM was required for transcriptional up-regulation of AP-1 family members and down-regulation of two other Ec1WVM-responsive genes, S100A4 and igfbp-3. Using a dominant-negative mutant of c-Jun (TAM67) and RNA interference-mediated silencing of c-Jun and Fra-1, we demonstrated that AP-1 was required for cell motility stimulated by the expression of Ec1WVM. In contrast, Ec1WVM-mediated changes in cell morphology were AP-1-independent. Our data suggest that mesenchymal transition induced by prolonged functional inhibition of E-cadherin is a slow and gradual process. At the initial step of this process, Ec1WVM triggers a positive autoregulatory mechanism that increases AP-1 activity. Activated AP-1 in turn contributes to Ec1WVM-mediated effects on gene expression and tumor cell motility. These data provide novel insight into the tumor suppressor function of E-cadherin.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 901-909 ◽  
Author(s):  
E. Levine ◽  
C.H. Lee ◽  
C. Kintner ◽  
B.M. Gumbiner

E-cadherin function was disrupted in vivo in developing Xenopus laevis embryos through the expression of a mutant E-cadherin protein lacking its cytoplasmic tail. This truncated form of E-cadherin was designed to act as a dominant negative mutant by competing with the extracellular interactions of wild-type endogenous E-cadherin. Expression of truncated E-cadherin in the early embryo causes lesions to develop in the ectoderm during gastrulation. In contrast, expression of a similarly truncated N-cadherin protein failed to cause the lesions. The ectodermal defect caused by the truncated E-cadherin is rescued by overexpression of wild-type E-cadherin, by co-injection of full-length E-cadherin RNA along with the RNA for the truncated form. Overexpression of full-length C-cadherin, however, is unable to compensate for the disruption of E-cadherin function and can actually cause similar ectodermal lesions when injected alone, suggesting that there is a specific requirement for E-cadherin. Therefore, E-cadherin seems to be specifically required for maintaining the integrity of the ectoderm during epiboly in the gastrulating Xenopus embryo. Differential cadherin expression reflects, therefore, the requirement for distinct adhesive properties during different morphogenetic cell behaviors.


2001 ◽  
Vol 12 (4) ◽  
pp. 847-862 ◽  
Author(s):  
Nasreen Akhtar ◽  
Neil A. Hotchin

The establishment of cadherin-dependent cell–cell contacts in human epidermal keratinocytes are known to be regulated by the Rac1 small GTP-binding protein, although the mechanisms by which Rac1 participates in the assembly or disruption of cell–cell adhesion are not well understood. In this study we utilized green fluorescent protein (GFP)-tagged Rac1 expression vectors to examine the subcellular distribution of Rac1 and its effects on E-cadherin–mediated cell–cell adhesion. Microinjection of keratinocytes with constitutively active Rac1 resulted in cell spreading and disruption of cell–cell contacts. The ability of Rac1 to disrupt cell–cell adhesion was dependent on colony size, with large established colonies being resistant to the effects of active Rac1. Disruption of cell–cell contacts in small preconfluent colonies was achieved through the selective recruitment of E-cadherin–catenin complexes to the perimeter of multiple large intracellular vesicles, which were bounded by GFP-tagged L61Rac1. Similar vesicles were observed in noninjected keratinocytes when cell–cell adhesion was disrupted by removal of extracellular calcium or with the use of an E-cadherin blocking antibody. Moreover, formation of these structures in noninjected keratinocytes was dependent on endogenous Rac1 activity. Expression of GFP-tagged effector mutants of Rac1 in keratinocytes demonstrated that reorganization of the actin cytoskeleton was important for vesicle formation. Characterization of these Rac1-induced vesicles revealed that they were endosomal in nature and tightly colocalized with the transferrin receptor, a marker for recycling endosomes. Expression of GFP-L61Rac1 inhibited uptake of transferrin-biotin, suggesting that the endocytosis of E-cadherin was a clathrin-independent mechanism. This was supported by the observation that caveolin, but not clathrin, localized around these structures. Furthermore, an inhibitory form of dynamin, known to inhibit internalization of caveolae, inhibited formation of cadherin vesicles. Our data suggest that Rac1 regulates adherens junctions via clathrin independent endocytosis of E-cadherin.


2000 ◽  
Vol 113 (10) ◽  
pp. 1803-1811
Author(s):  
Y. Hanakawa ◽  
M. Amagai ◽  
Y. Shirakata ◽  
K. Sayama ◽  
K. Hashimoto

Desmosomes contain two types of cadherin: desmocollin (Dsc) and desmoglein (Dsg). In this study, we examined the different roles that Dsc and Dsg play in the formation of desmosomes, by using dominant-negative mutants. We constructed recombinant adenoviruses (Ad) containing truncated mutants of E-cadherin, desmocollin 3a, and desmoglein 3 lacking a large part of their extracellular domains (EcaddeltaEC, Dsc3adeltaEC, Dsg3deltaEC), using the Cre-loxP Ad system to circumvent the problem of the toxicity of the mutants to virus-producing cells. When Dsc3adeltaEC Ad-infected HaCaT cells were cultured with high levels of calcium, E-cadherin and beta-catenin, which are marker molecules for the adherens junction, disappeared from the cell-cell contact sites, and cell-cell adhesion was disrupted. This also occurred in the cells infected with EcaddeltaEC Ad. With Dsg3deltaEC Ad infection, keratin insertion at the cell-cell contact sites was inhibited and desmoplakin, a marker of desmosomes, was stained in perinuclear dots while the adherens junctions remained intact. Dsc3adeltaEC Ad inhibited the induction of adherens junctions and the subsequent formation of desmosomes with the calcium shift, while Dsg3deltaEC Ad only inhibited the formation of desmosomes. To further determine whether Dsc3adeltaEC directly affected adherens junctions, mouse fibroblast L cells transfected with E-cadherin (LEC5) were infected with these mutant Ads. Both Dsc3adeltaEC and EcaddeltaEC inhibited the cell-cell adhesion of LEC5 cells, as determined by the cell aggregation assay, while Dsg3deltaEC did not. These results indicate that the dominant negative effects of Dsg3deltaEC were restricted to desmosomes, while those of Dsc3adeltaEC were observed in both desmosomes and adherens junctions. Furthermore, the cytoplasmic domain of Dsc3adeltaEC coprecipitated both plakoglobin and beta-catenin in HaCaT cells. In addition, beta-catenin was found to bind the endogenous Dsc in HaCaT cells. These findings lead us to speculate that Dsc interacts with components of the adherens junctions through beta-catenin, and plays a role in nucleating desmosomes after the adherens junctions have been established.


1999 ◽  
Vol 19 (9) ◽  
pp. 6333-6344 ◽  
Author(s):  
Masako Osada ◽  
Tatyana Tolkacheva ◽  
Weiqun Li ◽  
Tung O. Chan ◽  
Philip N. Tsichlis ◽  
...  

ABSTRACT Multiple biological functions have been ascribed to the Ras-related G protein R-Ras. These include the ability to transform NIH 3T3 fibroblasts, the promotion of cell adhesion, and the regulation of apoptotic responses in hematopoietic cells. To investigate the signaling mechanisms responsible for these biological phenotypes, we compared three R-Ras effector loop mutants (S61, G63, and C66) for their relative biological and biochemical properties. While the S61 mutant retained the ability to cause transformation, both the G63 and the C66 mutants were defective in this biological activity. On the other hand, while both the S61 and the C66 mutants failed to promote cell adhesion and survival in 32D cells, the G63 mutant retained the ability to induce these biological activities. Thus, the ability of R-Ras to transform cells could be dissociated from its propensity to promote cell adhesion and survival. Although the transformation-competent S61 mutant bound preferentially to c-Raf, it only weakly stimulated the mitogen-activated protein kinase (MAPK) activity, and a dominant negative mutant of MEK did not significantly perturb R-Ras oncogenicity. Instead, a dominant negative mutant of phosphatidylinositol 3-kinase (PI3-K) drastically inhibited the oncogenic potential of R-Ras. Interestingly, the ability of the G63 mutant to induce cell adhesion and survival was closely associated with the PI3-K-dependent signaling cascades. To further delineate R-Ras downstream signaling events, we observed that while a dominant negative mutant of Akt/protein kinase inhibited the ability of R-Ras to promote cell survival, both dominant negative mutants of Rac and Ral suppressed cell adhesion stimulated by R-Ras. Thus, the biological actions of R-Ras are mediated by multiple effectors, with PI3-K-dependent signaling cascades being critical to its functions.


Development ◽  
1996 ◽  
Vol 122 (9) ◽  
pp. 2895-2902 ◽  
Author(s):  
U. Dahl ◽  
A. Sjodin ◽  
H. Semb

It is thought that the cadherin protein family of cell adhesion molecules regulates morphogenetic events in multicellular organisms. In this study we have investigated the importance of beta-cell cadherins for cell-cell interactions mediating the organization of endocrine cells into pancreatic islets of Langerhans. To interfere with endogenous cadherin activity in beta-cells during pancreatic development, we overexpressed a dominant negative mutant of mouse E-cadherin, lacking nearly all extracellular amino acids, in pancreatic beta-cells in transgenic mice. Expression of the truncated E-cadherin receptor displaced both E- and N-cadherin from pancreatic beta-cells. As a result, the initial clustering of beta-cells, which normally begins at 13.5-14.5 days postcoitum, was perturbed. Consequently, the clustering of endocrine cells into islets, which normally begins at 17.5-18 days postcoitum, was abrogated. Instead, transgenic beta-cells were found dispersed in the tissue as individual cells, while alpha-cells selectively aggregated into islet-like clusters devoid of beta-cells. Furthermore, expression of truncated E-cadherin in beta-cells resulted in an accumulation of beta-catenin in the cytoplasm. Thus, we have for the first time shown in vivo that cadherins regulate adhesive properties of beta-cells which are essential for the aggregation of endocrine cells into islets.


Sign in / Sign up

Export Citation Format

Share Document