SCO-spondin: a new member of the thrombospondin family secreted by the subcommissural organ is a candidate in the modulation of neuronal aggregation

1996 ◽  
Vol 109 (5) ◽  
pp. 1053-1061 ◽  
Author(s):  
S. Gobron ◽  
H. Monnerie ◽  
R. Meiniel ◽  
I. Creveaux ◽  
W. Lehmann ◽  
...  

A number of cues are known to influence neuronal development including growth factors, cell-adhesion molecules, components of the extracellular matrix and guidance molecules. In this study, we present molecular and functional evidence that SCO-spondin, a novel relative of the thrombospondin family, could also be involved in neuronal development by modulating cell aggregative mechanisms. SCO-spondin corresponds to glycoproteins secreted by the subcommissural organ (SCO), an ependymal differentiation of the vertebrate brain located at the entrance to the Sylvian aqueduct. A cDNA clone of 2.6 kb, isolated from a bovine SCO cDNA library, was shown to be specifically and highly expressed in the bovine SCO by in situ hybridization and was subsequently sequenced. Analysis of the deduced amino acid sequence reveals the presence of four conserved domains known as thrombospondin (TSP) type I repeats. To account for the homology with thrombospondins and F-spondin, this secreted glycoprotein was called SCO-spondin. Two potent binding sites to glycosaminoglycan (BBXB) and to cytokine (TXWSXWS) are also found in the TSP type I repeats. The deduced amino acid sequence exhibits three other conserved domains called low density lipoprotein (LDL) receptor type A repeats. The possibility of SCO-spondin involvement in neuronal development as a component of the extracellular matrix is discussed regarding these molecular features. The idea of a modulation of cell-cell and/or cell-matrix interaction is further supported by the anti-aggregative effect observed on cultured neuronal cells of material solubilized from Reissner's fiber. That Reissner's fiber, the condensed secretory product of the SCO present along the whole spinal cord can be a potent morphogenetical structure is an important concept for the analysis of the molecular mechanisms leading to spinal cord differentiation.

1999 ◽  
Vol 296 (3) ◽  
pp. 457-469 ◽  
Author(s):  
S. Rodríguez ◽  
E. H. Navarrete ◽  
K. Vio ◽  
C. González ◽  
K. Schöbitz ◽  
...  

1998 ◽  
Vol 123 (4) ◽  
pp. 493-499 ◽  
Author(s):  
Kyu H. Chung ◽  
Dennis E. Buetow ◽  
Schuyler S. Korban

A nuclear gene, Lhcb1*Pp1, encoding a light-harvesting chlorophyll a/b-binding protein of photosystem II has been isolated from peach [Prunus persica (L.) Batsch. `Stark Earliglo'] leaf genomic DNA, cloned, and sequenced. This gene encodes a precursor polypeptide of 267 amino acids with a transit peptide of 34 and a type I mature protein of 233 amino acids. The amino acid sequence of the mature polypeptide is 89% to 94% and 80% to 94% similar to those encoded by type I Lhcb genes of annual and other woody plants, respectively. In contrast, the amino acid sequence of the peach transit peptide is less conserved being 47% to 69% similar to those of annual plants and only 17% to 22% similar to those of other woody plants. The peach gene was used as a probe for Lhcb gene expression. Lhcb mRNA is detected in leaves of field-grown trees during June to October. Lhcb mRNA is detected at a high level in leaves of peach shoots grown in tissue culture in the light, but only at a trace level in leaves grown in the dark. Some Lhcb genes appear to be light-modulated in stems. Lhcb1*Ppl contains four potential polyadenylation sites. S1 nuclease analysis detected transcripts of the sizes expected from each of the four polyadenylation sites. All four are found in leaves of light-grown shoots and of field-grown trees throughout the growing season. In contrast, only three are detected in stems of light-grown shoots.


1987 ◽  
Vol 247 (2) ◽  
Author(s):  
Sara Rodr�guez ◽  
PabloA. Rodr�guez ◽  
Carlos Banse ◽  
Est�banM. Rodr�guez ◽  
Andreas Oksche

2005 ◽  
Vol 321 (3) ◽  
pp. 429-441 ◽  
Author(s):  
C. Hoyo-Becerra ◽  
M. D. López-Avalos ◽  
M. Alcaide-Gavilán ◽  
M. C. Gómez-Roldán ◽  
J. Pérez ◽  
...  

1983 ◽  
Vol 215 (1) ◽  
pp. 183-189 ◽  
Author(s):  
R W Glanville ◽  
D Breitkreutz ◽  
M Meitinger ◽  
P P Fietzek

The complete amino acid sequence of the 279-residue CNBr peptide CB8 from the alpha 1 chain of type I calf skin collagen is presented. It was determined by sequencing overlapping fragments of CB8 produced by Staphylococcus aureus V8 proteinase, trypsin, Endoproteinase Arg-C and hydroxylamine. Tryptic cleavages were also made specific for lysine by blocking arginine residues with cyclohexane-1,2-dione. This completes the amino acid sequence analysis of the 1054-residues-long alpha (I) chain of calf skin collagen.


1989 ◽  
Vol 261 (3) ◽  
pp. 1015-1022 ◽  
Author(s):  
L G Sparrow ◽  
C P Robinson ◽  
D T W McMahon ◽  
M R Rubira

Component 7c is one of the four homologous type II intermediate-filament proteins that, by association with the complementary type I proteins, form the microfibrils or intermediate filaments in wool. Component 7c was isolated as the S-carboxymethyl derivative from Merino wool and its amino acid sequence was determined by manual and automatic sequencing of peptides produced by chemical and enzymic cleavage reactions. It is an N-terminally blocked molecule of 491 residues and Mr (not including the blocking group) of 55,600; the nature of the blocking group has not been determined. The predicted secondary structure shows that component 7c conforms to the now accepted pattern for intermediate-filament proteins in having a central rod-like region of approximately 310 residues of coiled-coil alpha-helix flanked by non-helical N-and C-terminal regions. The central region is divided by three non-coiled-coil linking segments into four helical segments 1A, 1B, 2A and 2B. The N-and C-terminal non-helical segments are 109 and 71 residues respectively and are rich in cysteine. Details of procedures use in determining the sequence of component 7c have been deposited as a Supplementary Publication SUP 50152 (65 pages) at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1989) 257,5. The information comprises: (1) details of chemical and enzymic methods used for cleavage of component 7c, peptides CN1, CN2 and CN3, and various other peptides, (2) details of the procedures used for the fractionation and purification of peptides from (1), including Figures showing the elution profiles from the chromatographic steps used, (3) details of methods used to determine the C-terminal sequence of peptide CN3, and (4) detailed evidence to justify a number of corrections to the previously published sequence.


Sign in / Sign up

Export Citation Format

Share Document