Occludin is a functional component of the tight junction

1996 ◽  
Vol 109 (9) ◽  
pp. 2287-2298 ◽  
Author(s):  
K.M. McCarthy ◽  
I.B. Skare ◽  
M.C. Stankewich ◽  
M. Furuse ◽  
S. Tsukita ◽  
...  

Occludin's role in mammalian tight junction activity was examined by ‘labeling’ the occludin pool with immunologically detectable chick occludin. This was accomplished by first transfecting MDCK cell with the Lac repressor gene. HygR clones were then transfected with chick occludin cDNA inserted into a Lac operator construct. The resulting HygR/NeoR clones were plated on porous inserts and allowed to form tight junctions. Once steady state transepithelial electrical resistance was achieved, isopropyl- beta-D-thiogalactoside was added to induce chick occludin expression. Confocal laser scanning microscopy of monolayers immunolabeled with Oc-2 monoclonal antibody revealed that chick occludin localized precisely to the preformed tight junctions. When sparse cultures were maintained in low Ca2+ medium, chick occludin and canine ZO-1 co-localized to punctate sites in the cytoplasm suggesting their association within the same vesicular structures. In low calcium medium both proteins also co-localized to contact sites between occasional cell pairs, where a prominent bar was formed at the plasma membrane. Chick occludin was detectable by western blot within two hours of adding isopropyl- beta-D-thiogalactoside to monolayers that had previously achieved steady state transepithelial electrical resistance; this coincided with focal immunofluorescence staining for chick occludin at the cell membrane of some cells. A gradual rise in transepithelial electrical resistance, above control steady state values, began five hours after addition of the inducing agent reaching new steady state values, which were 30–40% above baseline, 31 hours later. Upon removal of isopropyl- beta-D-thiogalactoside chick occludin expression declined slowly until it was no longer detected in western blots 72 hours later; transepithelial electrical resistance also returned to baseline values during this time. While densitometric analysis of western blots indicated that the presence of chick occludin had no detectable effect on E-cadherin or ZO-1 expression, the possibility cannot be excluded that ZO-1 might be a limiting factor in the expression of chick occludin at the cell surface. To test whether expression of chick occludin affected the process of tight junction assembly, monolayers in low Ca2+ medium were treated with isopropyl- beta-D-thiogalactoside for 24 or 48 hours, before Ca2+ was added to stimulate tight junction assembly. Chick occludin did not alter the rate at which transepithelial electrical resistance developed, however, steady state values were 30–40% above control monolayers not supplemented with the inducing agent. By freeze fracture analysis, the number of parallel tight junction strands shifted from a mode of three in controls to four strands in cells expressing chick occludin and the mean width of the tight junction network increased from 175 +/- 11 nm to 248 +/- 16 nm. Two days after plating confluent monolayers that were induced to express chick occludin, mannitol flux was reduced to a variable degree relative to control monolayers. With continued incubation with the inducing agent, mannitol flux increased on day 11 to 50%, and TER rose to 45% above controls. Both of these changes were reversible upon removal of isopropyl- beta-D-thiogalactoside. These data are consistent with the notion that occludin contributes to the electrical barrier function of the tight junction and possibly to the formation of aqueous pores within tight junction strands.

2019 ◽  
Vol 99 (3) ◽  
pp. 302-310 ◽  
Author(s):  
S.N. Min ◽  
X. Cong ◽  
Y. Zhang ◽  
R.L. Xiang ◽  
Y. Zhou ◽  
...  

Volume and composition of saliva are crucial for oral and systemic health. How substances, particularly macromolecules, are transported across the salivary gland epithelium has not been established in detail. Tricellulin is a component of tricellular tight junctions that form a central tube to serve as an important route for macromolecule transport. Whether tricellulin is expressed in the submandibular gland (SMG) and involved in salivation has been unknown. Here, by using Western blotting and immunofluorescence, tricellulin was found to be characteristically localized at tricellular contacts of human, rat, and mouse SMGs. Knockdown of tricellulin significantly increased, whereas overexpression of tricellulin decreased, paracellular permeability for 40-kDa but not for 4-kDa fluorescein isothiocyanate–dextran, while transepithelial electrical resistance was unaffected. Conversely, claudin-4 knockdown and overexpression affected transepithelial electrical resistance but not 40-kDa fluorescein isothiocyanate–dextran transport, suggesting that tricellulin regulated transport of macromolecules but not ions, which were mainly regulated by bicellular tight junctions (bTJs). Moreover, tricellulin was dynamically redistributed from tri- to bicellular membranes in cholinergically stimulated SMG tissues and cells. Immunoglobulin-like domain-containing receptor 1 (ILDR1) recruits tricellulin to tricellular contacts. The proportion of macromolecules in the saliva was increased, whereas the amount of stimulated saliva was unchanged in Ildr1-/- mice, which displayed abnormal tricellulin distribution in SMGs. Furthermore, tricellulin interacted with bTJ proteins, such as occludin, claudin-1, claudin-3, claudin-4, and ZO-1, in rat SMG epithelial polarized cell line SMG-C6. Knockdown of tricellulin decreased occludin levels. Thus, we revealed a specific expression pattern of tricellulin in SMG epithelium. Tricellulin not only functioned as a barrier for macromolecules but also modulated the connection of bTJs to the tight junction complex. Alterations in tricellulin expression and distribution could thereby change salivary composition. Our study provided novel insights on salivary gland tight junction organization and function.


1999 ◽  
Vol 277 (6) ◽  
pp. G1138-G1148 ◽  
Author(s):  
Simonetta Ferruzza ◽  
Maria-Laura Scarino ◽  
Giuseppe Rotilio ◽  
Maria Rosa Ciriolo ◽  
Paolo Santaroni ◽  
...  

The effects of copper on tight-junction permeability were investigated in human intestinal Caco-2 cells, monitoring transepithelial electrical resistance and transepithelial passage of mannitol. Apical treatment of Caco-2 cells with 10–100 μM CuCl2(up to 3 h) produced a time- and concentration-dependent increase in tight-junction permeability, reversible after 24 h in complete medium in the absence of added copper. These effects were not observed in cells treated with copper complexed to l-histidine [Cu(His)2]. The copper-induced increase in tight-junction permeability was affected by the pH of the apical medium, as was the apical uptake of64CuCl2, both exhibiting a maximum at pH 6.0. Treatment with CuCl2produced a concentration-dependent reduction in the staining of F actin but not of the junctional proteins zonula occludens-1, occludin, and E-cadherin and produced ultrastructural alterations to microvilli and tight junctions that were not observed after treatment with up to 200 μM Cu(His)2for 3 h. Overall, these data point to an intracellular effect of copper on tight junctions, mediated by perturbations of the F actin cytoskeleton.


2001 ◽  
Vol 75 (3) ◽  
pp. 1540-1546 ◽  
Author(s):  
Farideh Tafazoli ◽  
Carl Q. Zeng ◽  
Mary K. Estes ◽  
Karl-Erik Magnusson ◽  
Lennart Svensson

ABSTRACT The nonstructural NSP4 protein of rotavirus has been described as the first viral enterotoxin. In this study we have examined the effect of NSP4 on polarized epithelial cells (MDCK-1) grown on permeable filters. Apical but not basolateral administration of NSP4 was found to cause a reduction in the transepithelial electrical resistance, redistribution of filamentous actin, and an increase in paracellular passage of fluorescein isothiocyanate-dextran. Significant effects on transepithelial electrical resistance were noted after a 20- to 30-h incubation with 1 nmol of NSP4. Most surprisingly, the epithelium recovered its original integrity and electrical resistance upon removal of NSP4. Preincubation of nonconfluent MDCK-1 cells with NSP4 prevented not only development of a permeability barrier but also lateral targeting of the tight-junction-associated Zonula Occludens-1 (ZO-1) protein. Taken together, these data indicate new and specific effects of NSP4 on tight-junction biogenesis and show a novel effect of NSP4 on polarized epithelia.


2014 ◽  
Vol 42 (1) ◽  
pp. 195-200 ◽  
Author(s):  
Sarah J. Fletcher ◽  
Joshua Z. Rappoport

Epithelial layers are integral for many physiological processes and are maintained by intercellular adhesive structures. During disease, these structures can disassemble, leading to breakdown of epithelia. TJs (tight junctions) are one type of intercellular adhesion. Loss of TJs has been linked to the pathogenesis of many diseases. The present review focuses on the role of vesicle trafficking in regulation of TJs, in particular trafficking of the TJ protein occludin. We examine how endocytosis and endosomal recycling modulate occludin localization under steady-state conditions and during stimulated TJ disassembly.


2006 ◽  
Vol 50 (5) ◽  
pp. 1805-1812 ◽  
Author(s):  
Valthor Asgrimsson ◽  
Thorarinn Gudjonsson ◽  
Gudmundur Hrafn Gudmundsson ◽  
Olafur Baldursson

ABSTRACT The macrolide antibiotic azithromycin improves lung function and prognosis among patients with cystic fibrosis or diffuse panbronchiolitis, independently of bacterial eradication. Anti-inflammatory effects have been implicated, but data from in vivo studies are scarce, and the link between abnormal electrolyte content in airway surface liquid and bronchial infections remains uncertain. In the present study, we treated human airway epithelia on filter supports with azithromycin and monitored transepithelial electrical resistance. We found that azithromycin increased transepithelial electrical resistance of airway epithelia in a dose-dependent manner. Immunocytochemistry and Western blotting showed that addition of azithromycin changed the locations of proteins in cell cultures and induced processing of the tight junction proteins claudin-1 and claudin-4, occludin, and junctional adhesion molecule-A. These effects were reversible, and no effect was seen when cells were treated with penicillin or erythromycin. The data indicate that azithromycin increases the transepithelial electrical resistance of human airway epithelia by changing the processing of tight junction proteins. The results are novel and may help explain the beneficial effects of azithromycin in patients with cystic fibrosis, diffuse panbronchiolitis, and community-acquired pneumonia.


1993 ◽  
Vol 106 (3) ◽  
pp. 859-867 ◽  
Author(s):  
L.J. Rizzolo ◽  
Z.Q. Li

The retinal pigment epithelium lies at the interface between the neural retina and the choriocapillaris where it forms a blood-retinal barrier. Barrier function requires a polarized distribution of plasma membrane proteins and ‘tight’ tight junctions. During chicken embryogenesis, these features develop gradually. Although terminal junctional complexes are established by embryonic day 4, the distribution of the Na+/K(+)-APTase is not polarized in all cells of the epithelium until embryonic day 11. Similarly, the tight junctions of early embryos are leaky, but become tight by hatching (embryonic day 21). We used primary cell culture to examine the molecular basis of this gradual induction of polarized function. Pigment epithelium harvested from embryonic day 7, and cultured on filters, formed monolayers coupled by junctional complexes. The distribution of the Na+/K(+)-ATPase was non-polarized and the tight junctions were leaky with a transepithelial electrical resistance of 20–30 omega cm2. To isolate diffusible factors that stimulate the transepithelial electrical resistance, neural retinas from embryonic day 7, 14 or 16 embryos were incubated at 37 degrees C in base medium for 6 hours. The conditioned medium was added to the apical chamber of freshly cultured pigment epithelium. The distribution of the Na+/K(+)-ATPase became basolateral, and the electrical resistance gradually increased two to three times over 6 days. The increase in electrical resistance corresponded to a decrease in the rate of [3H]inulin diffusion across the monolayer. The effectiveness of the conditioned medium increased steadily with increasing age of the neural retina. Rather than increased production of an active factor, apparently different active factors were produced at different ages.(ABSTRACT TRUNCATED AT 250 WORDS)


2008 ◽  
Vol 294 (4) ◽  
pp. G906-G913 ◽  
Author(s):  
Francesco Raimondi ◽  
Pasquale Santoro ◽  
Maria Vittoria Barone ◽  
Serena Pappacoda ◽  
Maria Luisa Barretta ◽  
...  

Intestinal and systemic illnesses have been linked to increased gut permeability. Bile acids, whose luminal profile can be altered in human disease, modulate intestinal paracellular permeability. We investigated the mechanism by which selected bile acids increase gut permeability using a validated in vitro model. Human intestinal Caco-2 cells were grown in monolayers and challenged with a panel of bile acids. Transepithelial electrical resistance and luminal-to-basolateral fluxes of 10-kDa Cascade blue-conjugated dextran were used to monitor paracellular permeability. Immunoprecipitation and immunoblot analyses were employed to investigate the intracellular pathway. Redistribution of tight junction proteins was studied by confocal laser microscopy. Micromolar concentrations of cholic acid, deoxycholic acid (DCA), and chenodeoxycholic acid (CDCA) but not ursodeoxycholic acid decreased transepithelial electrical resistance and increased dextran flux in a reversible fashion. Coincubation of 50 μM CDCA or DCA with EGF, anti-EGF monoclonal antibody, or specific src inhibitor 4-Amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP-2) abolished the effect. A concentration of 50 μM of either CDCA or DCA also induced EGF receptor phosphorylation, occludin dephosphorylation, and occludin redistribution at the tight junction level in the same time frame and in a reversible fashion. We conclude that selected bile acids modulate intestinal permeability via EGF receptor autophosphorylation, occludin dephosphorylation, and rearrangement at the tight junction level. The effect is mediated by the src family kinases and is abolished by EGF treatment. These data also support the role of bile acids in the genesis of necrotizing enterocolitis and the protective effect of EGF treatment.


1996 ◽  
Vol 134 (4) ◽  
pp. 1031-1049 ◽  
Author(s):  
M S Balda ◽  
J A Whitney ◽  
C Flores ◽  
S González ◽  
M Cereijido ◽  
...  

Tight junctions, the most apical of the intercellular junctions that connect individual cells in a epithelial sheet, are thought to form a seal that restricts paracellular and intramembrane diffusion. To analyze the functioning of tight junctions, we generated stable MDCK strain 2 cell lines expressing either full-length or COOH-terminally truncated chicken occludin, the only known transmembrane component of tight junctions. Confocal immunofluorescence and immunoelectron microscopy demonstrated that mutant occludin was incorporated into tight junctions but, in contrast to full-length chicken occludin, exhibited a discontinuous junctional staining pattern and also disrupted the continuous junctional ring formed by endogenous occludin. This rearrangement of occludin was not paralleled by apparent changes in the junctional morphology as seen by thin section electron microscopy nor apparent discontinuities of the junctional strands observed by freeze-fracture. Nevertheless, expression of both wild-type and mutant occludin induced increased transepithelial electrical resistance (TER). In contrast to TER, particularly the expression of COOH-terminally truncated occludin led to a severalfold increase in paracellular flux of small molecular weight tracers. Since the selectivity for size or different types of cations was unchanged, expression of wild-type and mutant occludin appears to have activated an existing mechanism that allows selective paracellular flux in the presence of electrically sealed tight junctions. Occludin is also involved in the formation of the apical/basolateral intramembrane diffusion barrier, since expression of the COOH-terminally truncated occludin was found to render MDCK cells incapable of maintaining a fluorescent lipid in a specifically labeled cell surface domain.


2003 ◽  
Vol 284 (4) ◽  
pp. C1021-C1030 ◽  
Author(s):  
Lawrence W. Leung ◽  
Ruben G. Contreras ◽  
Catalina Flores-Maldonado ◽  
Marcelino Cereijido ◽  
Enrique Rodriguez-Boulan

Madin-Darby canine kidney (MDCK) I and Fisher rat thyroid (FRT) cells exhibit transepithelial electrical resistance (TER) values in excess of 5,000 Ω · cm2. When these cells were incubated in the presence of various inhibitors of sphingolipid biosynthesis, a >5-fold reduction of TER was observed without changes in the gate function for uncharged solutes or the fence function for apically applied fluorescent lipids. The localization of ZO-1 and occludin was not altered between control and inhibitor-treated cells, indicating that the tight junction was still intact. Furthermore, the complexity of tight junction strands, analyzed by freeze-fracture microscopy, was not reduced. Once the inhibitor was removed and the cells were allowed to synthesize sphingolipids, a gradual recovery of the TER was observed. Interestingly, these inhibitors did not attenuate the TER of MDCK II cells, a cell line that typically exhibits values below 800 Ω · cm2. These results suggest that glycosphingolipids play a role in regulating the electrical properties of epithelial cells.


2009 ◽  
Vol 29 (2) ◽  
pp. 217-226 ◽  
Author(s):  
Takashi Horiuchi ◽  
Kazuya Matsunaga ◽  
Masatoshi Banno ◽  
Yusuke Nakano ◽  
Kohei Nishimura ◽  
...  

Background Reactive oxygen species (ROS) have been speculated as possible inducers of structural or functional changes that lead to a hyperpermeable state in patients on long-term peritoneal dialysis. This study aimed to compare localization of tight junction-associated proteins (TJPs), which relate to solute permeability characteristics, between human peritoneal mesothelial cell (HPMC) monolayers and human umbilical vein endothelial cell (HUVEC) monolayers under oxidative stress. Methods HPMCs and HUVECs were cultured on a polymer mesh until transepithelial electrical resistance reached a plateau. Solute permeation tests were conducted using FITC-labeled dextrans. Localization of TJPs was observed under a confocal laser scanning microscope. These experiments were carried out with/without 0.1 mmol/L H2O2. In addition, ROS production as well as the amounts of intracellular reductive glutathione (GSH) and oxidative glutathione were measured. Results When the monolayers were exposed to 0.1 mmol/L H2O2/medium for 2 hours, the HPMC monolayer revealed a significant reduction in transepithelial electrical resistance (from 32.5 ± 3.4 to 17.4 ± 4.9 Ω cm ) with delocalization of TJPs, particularly occludins. The HUVEC monolayer remained stable and exhibited an unremarkable change in TJP organization. Compared to the HUVEC monolayer, the HPMC monolayer exhibited two- to threefold higher 2′,7′–dichlorofluorescein intensities that increased in a dose-dependent manner. HUVECs contained approximately 2.5-times more GSH than HPMCs. This supported the lesser production of ROS when exposed to 0.1 mmol/L H2O2 for 24 hours. HUVECs used 8.03 nmol/mg GSH protein to maintain TJP localization, while only 3.75 nmol/mg GSH protein was available for the HPMCs. Conclusion The HUVEC monolayer, which was less permeable to middle-to-high molecular weight solutes, was more tolerant against ROS stress than the HPMC monolayer. Availability of intracellular GSH is an important issue in maintaining the integrity of the mesothelium.


Sign in / Sign up

Export Citation Format

Share Document