Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells

1997 ◽  
Vol 110 (17) ◽  
pp. 2065-2077 ◽  
Author(s):  
M.G. Lampugnani ◽  
M. Corada ◽  
P. Andriopoulou ◽  
S. Esser ◽  
W. Risau ◽  
...  

In src- and ras-transformed cells, tyrosine phosphorylation of adherens junction (AJ) components is related to impairment of cell-cell adhesion. In this paper we report that in human endothelial cells (EC), tyrosine phosphorylation of AJ can be a physiological process regulated by cell density. Immunofluorescence analysis revealed that a phosphotyrosine (P-tyr) antibody could stain cell-cell junctions only in sparse or loosely confluent EC, while the staining was markedly reduced in tightly confluent cultures. This process was reversible, since on artificial wounding of EC monolayers, the cells at the migrating front reacquired P-tyr labelling at cell contacts. In EC, the major cadherin at intercellular AJ is the cell-type-specific VE-cadherin. We therefore analyzed whether this molecule was at least in part responsible for the changes in P-tyr content at cell junctions. Tyrosine phosphorylation of VE-cadherin, beta-catenin and p120, occurred in looser AJ, i.e. in recently confluent cells, and was notably reduced in tightly confluent cultures. Changes in P-tyr content paralleled changes in the molecular organization of AJ. VE-cadherin was mostly associated with beta-catenin and p120 in loose EC monolayers, while in long-confluent cells, these two catenins were largely replaced by plakoglobin. Inhibition of P-tyr phosphatases (PTPases) by PV markedly augmented the P-tyr content of VE-cadherin, which bound p120 and beta-catenin more efficiently, but not plakoglobin. Transfection experiments in CHO cells showed that p120 could bind to a VE-cadherin cytoplasmic region different from that responsible for beta-catenin binding, and PV stabilized this association. Overall these data indicate that endothelial AJ are dynamic structures that can be affected by the state of confluence of the cells. Tyrosine phosphorylation of VE-cadherin and its association to p120 and beta-catenin characterizes early cell contacts, while the formation of mature and cytoskeleton-connected junctions is accompanied by dephosphorylation and plakoglobin association.

1998 ◽  
Vol 111 (3) ◽  
pp. 347-357 ◽  
Author(s):  
S. Levenberg ◽  
B.Z. Katz ◽  
K.M. Yamada ◽  
B. Geiger

In this study we demonstrate that local stimulation of cell surface cadherins or integrins induces a selective enhancement of adherens junction or focal contact assembly, respectively, throughout the cell. N-cadherin transfected CHO cells (CHO-Ncad) were incubated with different ligands including N-cadherin extracellular domain (NEC), anti-N-cadherin antibodies, fibronectin and concanavalin A (ConA), conjugated to synthetic beads. Electron microscopic examination indicated that both cadherin- and integrin-reactive beads bound tightly to the cell surface and were apparently endocytosed after several hours of incubation. The ConA-beads remained largely at the cell surface. Immunofluorescence labeling of the cells with antibodies to different adhesion-associated molecules indicated that both NEC- and anti-N-cadherin-conjugated beads induced a major increase in the level of junction-associated cadherin and beta-catenin labeling and a modest increase in junctional vinculin labeling, compared to untreated cells or cells bound to ConA-beads. FN-conjugated beads, on the other hand, significantly enhanced vinculin labeling at focal contacts and suppressed cadherin and beta-catenin staining in cell-cell junctions. The cadherin-reactive beads specifically stimulated tyrosine phosphorylation at cell-cell junctions, while the FN-beads increased the levels of focal contact-associated phosphotyrosine, as shown by immunofluorescence labeling of the cells for phosphotyrosine. Inhibition of this phosphorylation by genistein resulted in a complete suppression of the effects of both types of beads. These findings indicate that specific cadherin- and integrin-mediated surface interactions can trigger positively cooperative long-range signaling events which lead to the selective assembly of cell-cell or cell-matrix adhesions, and that these signals involve tyrosine phosphorylation.


2003 ◽  
Vol 14 (9) ◽  
pp. 3553-3564 ◽  
Author(s):  
Naoko Kogata ◽  
Michitaka Masuda ◽  
Yuji Kamioka ◽  
Akiko Yamagishi ◽  
Akira Endo ◽  
...  

Platelet endothelial adhesion molecule-1 (PECAM-1) is a part of intercellular junctions and triggers intracellular signaling cascades upon homophilic binding. The intracellular domain of PECAM-1 is tyrosine phosphorylated upon homophilic engagement. However, it remains unclear which tyrosine kinase phosphorylates PECAM-1. We sought to isolate tyrosine kinases responsible for PECAM-1 phosphorylation and identified Fer as a candidate, based on expression cloning. Fer kinase specifically phosphorylated PECAM-1 at the immunoreceptor tyrosine-based inhibitory motif. Notably, Fer induced tyrosine phosphorylation of SHP-2, which is known to bind to the immunoreceptor tyrosine-based inhibitory motif of PECAM-1, and Fer also induced tyrosine phosphorylation of Gab1 (Grb2-associated binder-1). Engagement-dependent PECAM-1 phosphorylation was inhibited by the overexpression of a kinase-inactive mutant of Fer, suggesting that Fer is responsible for the tyrosine phosphorylation upon PECAM-1 engagement. Furthermore, by using green fluorescent protein-tagged Fer and a time-lapse fluorescent microscope, we found that Fer localized at microtubules in polarized and motile vascular endothelial cells. Fer was dynamically associated with growing microtubules in the direction of cell-cell contacts, where p120catenin, which is known to associate with Fer, colocalized with PECAM-1. These results suggest that Fer localized on microtubules may play an important role in phosphorylation of PECAM-1, possibly through its association with p120catenin at nascent cell-cell contacts.


2004 ◽  
Vol 286 (5) ◽  
pp. C1159-C1169 ◽  
Author(s):  
Ruei-Jiun Hung ◽  
Ia-Wen J. Hsu ◽  
Jennifer L. Dreiling ◽  
Mon-Juan Lee ◽  
Cicely A. Williams ◽  
...  

Sphingosine 1-phosphate (S1P), a bioactive phospholipid, simultaneously induces actin cytoskeletal rearrangements and activation of matriptase, a membrane-associated serine protease in human mammary epithelial cells. In this study, we used a monoclonal antibody selective for activated, two-chain matriptase to examine the functional relationship between these two S1P-induced events. Ten minutes after exposure of 184 A1N4 mammary epithelial cells to S1P, matriptase was observed to accumulate at cell-cell contacts. Activated matriptase first began to appear as small spots at cell-cell contacts, and then its deposits elongated along cell-cell contacts. Concomitantly, S1P induced assembly of adherens junctions and subcortical actin belts. Matriptase localization was observed to be coincident with markers of adherens junctions at cell-cell contacts but likely not to be incorporated into the tightly bound adhesion plaque. Disruption of subcortical actin belt formation and prevention of adherens junction assembly led to prevention of accumulation and activation of the protease at cell-cell contacts. These data suggest that S1P-induced accumulation and activation of matriptase depend on the S1P-induced adherens junction assembly. Although MAb M32, directed against one of the low-density lipoprotein receptor class A domains of matriptase, blocked S1P-induced activation of the enzyme, the antibody had no effect on S1P-induced actin cytoskeletal rearrangement. Together, these data indicate that actin cytoskeletal rearrangement is necessary but not sufficient for S1P-induced activation of matriptase at cell-cell contacts. The coupling of matriptase activation to adherens junction assembly and actin cytoskeletal rearrangement may serve to ensure tight control of matriptase activity, restricted to cell-cell junctions of mammary epithelial cells.


1998 ◽  
Vol 111 (13) ◽  
pp. 1853-1865 ◽  
Author(s):  
S. Esser ◽  
M.G. Lampugnani ◽  
M. Corada ◽  
E. Dejana ◽  
W. Risau

Interendothelial junctions play an important role in the regulation of endothelial functions, such as vasculogenesis, angiogenesis, and vascular permeability. In this paper we show that vascular endothelial growth factor (VEGF), a potent inducer of new blood vessels and vascular permeability in vivo, stimulated the migration of endothelial cells after artificial monolayer wounding and induced an increase in paracellular permeability of human umbilical vein endothelial cells (HUVECs). Furthermore, VEGF increased phosphotyrosine labeling at cell-cell contacts. Biochemical analyses revealed a strong induction of VEGF-receptor-2 (flk-1/KDR) tyrosine-autophosphorylation by VEGF which was maximal after 5 minutes and was followed by receptor downregulation. 15 minutes to 1 hour after VEGF stimulation the endothelial adherens junction components VE-cadherin, beta-catenin, plakoglobin, and p120 were maximally phosphorylated on tyrosine, while alpha-catenin was not modified. PECAM-1/CD31, another cell-cell junctional adhesive molecule, was tyrosine phosphorylated with similar kinetics in response to VEGF. In contrast, activation of VEGF-receptor-1 (Flt-1) by its specific ligand placenta growth factor (PlGF) had no effect on the tyrosine phosphorylation of cadherins and catenins. Despite the rapid and transient receptor activation and the subsequent tyrosine phosphorylation of adherens junction proteins the cadherin complex remained stable and associated with junctions. Our results demonstrate that the endothelial adherens junction is a downstream target of VEGFR-2 signaling and suggest that tyrosine phosphorylation of its components may be involved in the the loosening of cell-cell contacts in established vessels to modulate transendothelial permeability and to allow sprouting and cell migration during angiogenesis.


Blood ◽  
2012 ◽  
Vol 120 (16) ◽  
pp. 3371-3381 ◽  
Author(s):  
Malika Oubaha ◽  
Michelle I. Lin ◽  
Yoran Margaron ◽  
Dominic Filion ◽  
Emily N. Price ◽  
...  

Abstract Angiogenic sprouting requires that cell-cell contacts be maintained during migration of endothelial cells. Angiopoietin-1 (Ang-1) and vascular endothelial growth factor act oppositely on endothelial cell junctions. We found that Ang-1 promotes collective and directional migration and, in contrast to VEGF, induces the formation of a complex formed of atypical protein kinase C (PKC)-ζ and β-catenin at cell-cell junctions and at the leading edge of migrating endothelial cells. This complex brings Par3, Par6, and adherens junction proteins at the front of migrating cells to locally activate Rac1 in response to Ang-1. The colocalization of PKCζ and β-catenin at leading edge along with PKCζ-dependent stabilization of cell-cell contacts promotes directed and collective endothelial cell migration. Consistent with these results, down-regulation of PKCζ in endothelial cells alters Ang-1–induced sprouting in vitro and knockdown in developing zebrafish results in intersegmental vessel defects caused by a perturbed directionality of tip cells and by loss of cell contacts between tip and stalk cells. These results reveal that PKCζ and β-catenin function in a complex at adherens junctions and at the leading edge of migrating endothelial cells to modulate collective and directional migration during angiogenesis.


2010 ◽  
Vol 298 (3) ◽  
pp. L361-L370 ◽  
Author(s):  
K. L. Grinnell ◽  
B. Casserly ◽  
E. O. Harrington

Pulmonary edema is mediated in part by disruption of interendothelial cell contacts. Protein tyrosine phosphatases (PTP) have been shown to affect both cell-extracellular matrix and cell-cell junctions. The SH2 domain-containing nonreceptor PTP, SHP2, is involved in intercellular signaling through direct interaction with adherens junction proteins. In this study, we examined the role of SHP2 in pulmonary endothelial barrier function. Inhibition of SHP2 promoted edema formation in rat lungs and increased monolayer permeability in cultured lung endothelial cells. In addition, pulmonary endothelial cells demonstrated a decreased level of p190RhoGAP activity following inhibition of SHP2, events that were accompanied by a concomitant increase in RhoA activity. Furthermore, immunofluorescence microscopy confirmed enhanced actin stress fiber formation and diminished interendothelial staining of adherens junction complex-associated proteins upon SHP2 inhibition. Finally, immunoprecipitation and immunoblot analyses demonstrated increased tyrosine phosphorylation of VE-cadherin, β-catenin, and p190RhoGAP proteins, as well as decreased association between p120-catenin and VE-cadherin proteins. Our findings suggest that SHP2 supports basal pulmonary endothelial barrier function by coordinating the tyrosine phosphorylation profile of VE-cadherin, β-catenin, and p190RhoGAP and the activity of RhoA, signaling molecules important in adherens junction complex integrity.


Development ◽  
2021 ◽  
Author(s):  
Eunice H. Y. Chan ◽  
Yanxiang Zhou ◽  
Birgit L. Aerne ◽  
Maxine V. Holder ◽  
Anne Weston ◽  
...  

Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. RASSF8 loss elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, whose depletion phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document