RagA is a functional homologue of S. cerevisiae Gtr1p involved in the Ran/Gsp1-GTPase pathway

1998 ◽  
Vol 111 (1) ◽  
pp. 11-21 ◽  
Author(s):  
E. Hirose ◽  
N. Nakashima ◽  
T. Sekiguchi ◽  
T. Nishimoto

Human RagA and RagB is reported to be 52% identical to a putative GTPase of Saccharomyces cerevisiae, Gtr1p. According to the reported nucleotide sequence, we amplified human RagA and RagBs cDNAs from the human B cell cDNA library with PCR. Both cDNAs rescued a cold sensitivity of S. cerevisiae, gtr1-11. Furthermore, we introduced into the cloned human RagA cDNA, the mutation ‘T21L’ corresponding to the gtr1-11 mutation which has been reported to suppress not only all of rcc1-, temperature-sensitive mutants of Ran/Gsp1p GTPase GDP/GTP-exchanging factor, but also rna1-1, a temperature-sensitive mutant of Ran/Gsp1p GTPase-activating protein. The resulting RagAgtr1-11 cDNA partially, but significantly, suppressed both rcc1- and rna1-1 mutations. These results indicated that RagA and RagBs are functional homologues of S. cervisiae Gtr1p. Interestingly, while wild-type human RagA and RagBs were localized within the cytoplasm, similar to S. cerevisiae Gtr1p, the mutated human RagAgtr1-11 corresponding to a dominant negative form of RagA was distributed in discrete speckles in the nucleus, being localized side by side with SC-35, a non-snRNP of the splicing complex. In contrast, a dominant positive form of RagA, Q66L was localized in the cytoplasm. Thus, RagA was suggested to shuttle between the cytoplasm and the nucleus, depending on the bound nucleotide state.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3585-3585
Author(s):  
Norihiko Kawamata ◽  
Fabienne Isken ◽  
Stefanie Goellner ◽  
C. Müller-Tidow ◽  
H. Phillip Koeffler

Abstract PAX5 is a transcriptional factor playing an important role in B-cell development. Overexpression of PAX5 induced by translocation to the enhancer region of immunoglobulin heavy chain gene occurs in non-Hodgkin lymphomas (NHL), suggesting that PAX5 can be also associated with development of NHL. To identify genes associated with tumorigenesis in malignancies overexpressing PAX5, we performed ChIP-on-chip analysis using PAX5 specific antibody. Non-specifically immunoprecipitated DNA by antibodies can cause false positive results using ChIP-on-chip analysis (background). To reduce the background in ChIP-on chip analysis, we used a dominant negative form of PAX5 and a wild-type PAX5 specific antibody for our ChIP-on-chip analysis. We have previously found a PAX5 chimeric protein expressed in acute lymphoblastic leukemia in which the C-terminal end of PAX5 was replaced by C20ORF112 protein (Kawamata N et al, Proc Natl Acad Sci U S A. Aug. 12, 2008). We have also found that this chimeric protein behaved in a dominant negative fashion over the wild-type PAX5 and suppressed expression of target genes of wild-type PAX5. PAX5 chimeric protein can compete with wild-type PAX5 for binding on the promoter region of direct down-stream target genes. To identify the genes directly regulated by PAX5 in human B-cells, we transfected the dominant-negative form of PAX5 chmeric protein, PAX5-C20ORF112 (PAX5-C20S) into NALM6 human B-cell leukemia cells which constitutively express abundant PAX5. Transfected cells were collected and chromatin immunoprecipitation (ChIP) assay was performed using PAX5 C-terminal specific antibody which can recognize only wild-type PAX5, but not the chimeric PAX5 protein, PAX5C20S. As a control, we also performed ChIP assay using NALM6 cells transfected with an empty vector. Immunoprecipitated DNA was recovered and amplified using the whole genome amplification technique. The DNAs were hybridized with oligonucleotide probes containing the promoter regions of the human genome. The levels of hybridized DNA were quantified and genes directly bound by PAX5 were identified. Comparison between NALM6 cells transfected with the empty vector and PAX5C20S significantly reduced the background and allowed identification of genes directly regulated by PAX5 in NALM6, including BUB1B, SSSCA1, CEP68, and BAG1. BUB1B, CEP68 and SSSCA1 are proteins involved in mitosis; BAG1 is a protein associated with apoptosis. Dysregulation of these genes by overexpressed PAX5 may be associated with development of B-cell malignancies.


2015 ◽  
Vol 308 (10) ◽  
pp. L1014-L1024 ◽  
Author(s):  
BreAnne MacKenzie ◽  
Ingrid Henneke ◽  
Stefanie Hezel ◽  
Denise Al Alam ◽  
Elie El Agha ◽  
...  

Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury ( days 0– 11; days 0– 28) or during later stages ( days 6– 28 and 14– 28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1145-1145
Author(s):  
Ramesh C Nayak ◽  
Shiva Keshava ◽  
Usha Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Abstract 1145 Recent studies from our laboratory and others showed that endothelial cell protein C receptor (EPCR), the cellular receptor for protein C and activated protein C (APC), also serves as a receptor for factor VII (FVII) and activated factor VII (FVIIa). At present, the physiological importance of FVII/FVIIa binding to EPCR is largely unknown, but this interaction may play a role in the clearance or transport of FVII/FVIIa from circulation to tissues. Our recent studies showed that FVIIa (or APC) binding to EPCR promoted the endocytosis of EPCR via dynamin and caveolar-dependent pathways, and the endocytosed receptor-ligand complexes were accumulated in the recycling compartment (REC) before being targeted back to the cell surface (Blood 2009;114:1974-1986). Rab GTPases (Rab 4, Rab 5, Rab 7 and Rab 11 etc.), which localize to specific endosomal structures, have been shown to play crucial roles in the endocytic and exocytic pathways of receptor or receptor/ligand complexes. The role of these Ras-like small GTPases is unknown in endocytosis and trafficking of EPCR and EPCR/FVIIa complexes. The present study was undertaken in order to investigate the role of different Rab GTPases (Rab 4A, Rab 5 and Rab11) in the intracellular trafficking of EPCR and internalized FVIIa in endothelial cells. For this, we examined the effect of expressing wild-type (wt) or mutant Rab proteins on the intracellular distribution of FVIIa in human umbilical vein endothelial cells (HUVEC). The wild-type, constitutively active and dominant negative mutants of Rab 4A, Rab 5 and Rab 11 were cloned in adenoviral shuttle vector pacAd5 K-N pA CMV and the recombinant adenoviruses expressing these Rab GTPase variants were generated in human embryonic kidney (HEK) cells. HUVEC were infected with recombinant adenoviruses encoding for the wild-type, active or dominant negative mutant of Rab 4A, Rab 5 and Rab 11 (25 moi/cell). After culturing the cells for 24 h, they were incubated with recombinant FVIIa conjugated with Alexa fluor 488 fluorescent dye (AF488-FVIIa) for 1 h at 37°C. The intracellular distribution of FVIIa was analyzed by monitoring the fluorescence of AF488-FVIIa by confocal microscopy. The intracellular distribution of EPCR and Rab proteins was evaluated by confocal microscopy after immunofluorescence staining. Expression of Rab 4A wt or constitutively active Rab 4A (Q67L) forms led to accumulation of AF488-FVIIa within the Rab 4A positive early/sorting endosomes, whereas FVIIa accumulation in the REC was inhibited. In cells expressing Rab 4A dominant negative form (S22N), FVIIa was trafficked normally and accumulated in the REC. Rab 4A is known to regulate fusion of early and sorting endosomes, as well as recycling of the internalized receptor or receptor/ligand complexes from early/sorting endosomes back to the cell surface. Increased accumulation of FVIIa in early/sorting endosomes but a decrease in REC in HUVEC transduced to express wt and constitutively active Rab 4A, suggests that Rab 4A plays a role in the transport of internalized FVIIa and FVIIa-EPCR complexes from sorting endosomes back to the cell surface. HUVEC expressing Rab 5 wt or active mutant (Q79L) showed larger endosomal structures beneath the plasma membrane where EPCR and FVIIa were accumulated; very little FVIIa entered the REC. The trafficking of internalized FVIIa remained unaffected in HUVEC expressing Rab 5A dominant negative form (S34N). As Rab 5 is known to induce receptor internalization and fusion between early endosomes, the large endosomal structures containing AF488-FVIIa found in HUVEC expressing wt or constitutively active form but not in cells expressing the dominant negative form suggests that Rab 5 facilitates internalization of FVIIa-EPCR complexes. In contrast to the data obtained in HUVEC expressing Rab 4A and Rab 5, the intracellular trafficking of AF488-FVIIa remained unaffected in HUVEC expressing either wt or constitutively active Rab 11 mutant. Rab 11 dominant negative mutant (S34N) prevented the entry of AF488-FVIIa into REC. The observation that the dominant negative form of Rab 11 inhibits the entry of internalized FVIIa to the REC indicates that the activation of Rab 11 by GTP is required for the transport of FVIIa from sorting endosomes toward the recycling compartment. Overall our present data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR and internalized FVIIa in endothelial cells. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 189 (5) ◽  
pp. 1565-1572 ◽  
Author(s):  
Venkata Ramana Vepachedu ◽  
Peter Setlow

ABSTRACT The release of dipicolinic acid (DPA) during the germination of Bacillus subtilis spores by the cationic surfactant dodecylamine exhibited a pH optimum of ∼9 and a temperature optimum of 60°C. DPA release during dodecylamine germination of B. subtilis spores with fourfold-elevated levels of the SpoVA proteins that have been suggested to be involved in the release of DPA during nutrient germination was about fourfold faster than DPA release during dodecylamine germination of wild-type spores and was inhibited by HgCl2. Spores carrying temperature-sensitive mutants in the spoVA operon were also temperature sensitive in DPA release during dodecylamine germination as well as in lysozyme germination of decoated spores. In addition to DPA, dodecylamine triggered the release of amounts of Ca2+ almost equivalent to those of DPA, and at least one other abundant spore small molecule, glutamic acid, was released in parallel with Ca2+ and DPA. These data indicate that (i) dodecylamine triggers spore germination by opening a channel in the inner membrane for Ca2+-DPA and other small molecules, (ii) this channel is composed at least in part of proteins, and (iii) SpoVA proteins are involved in the release of Ca2+-DPA and other small molecules during spore germination, perhaps by being a part of a channel in the spore's inner membrane.


Sign in / Sign up

Export Citation Format

Share Document