ChIP-on-Chip Analysis Using Dominant Negative Form of PAX5 Fusion Gene Revealed Genes Associated with Tumorigenesis Were Directly Regulated by PAX5 in a Human B Cell Line, NALM6

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3585-3585
Author(s):  
Norihiko Kawamata ◽  
Fabienne Isken ◽  
Stefanie Goellner ◽  
C. Müller-Tidow ◽  
H. Phillip Koeffler

Abstract PAX5 is a transcriptional factor playing an important role in B-cell development. Overexpression of PAX5 induced by translocation to the enhancer region of immunoglobulin heavy chain gene occurs in non-Hodgkin lymphomas (NHL), suggesting that PAX5 can be also associated with development of NHL. To identify genes associated with tumorigenesis in malignancies overexpressing PAX5, we performed ChIP-on-chip analysis using PAX5 specific antibody. Non-specifically immunoprecipitated DNA by antibodies can cause false positive results using ChIP-on-chip analysis (background). To reduce the background in ChIP-on chip analysis, we used a dominant negative form of PAX5 and a wild-type PAX5 specific antibody for our ChIP-on-chip analysis. We have previously found a PAX5 chimeric protein expressed in acute lymphoblastic leukemia in which the C-terminal end of PAX5 was replaced by C20ORF112 protein (Kawamata N et al, Proc Natl Acad Sci U S A. Aug. 12, 2008). We have also found that this chimeric protein behaved in a dominant negative fashion over the wild-type PAX5 and suppressed expression of target genes of wild-type PAX5. PAX5 chimeric protein can compete with wild-type PAX5 for binding on the promoter region of direct down-stream target genes. To identify the genes directly regulated by PAX5 in human B-cells, we transfected the dominant-negative form of PAX5 chmeric protein, PAX5-C20ORF112 (PAX5-C20S) into NALM6 human B-cell leukemia cells which constitutively express abundant PAX5. Transfected cells were collected and chromatin immunoprecipitation (ChIP) assay was performed using PAX5 C-terminal specific antibody which can recognize only wild-type PAX5, but not the chimeric PAX5 protein, PAX5C20S. As a control, we also performed ChIP assay using NALM6 cells transfected with an empty vector. Immunoprecipitated DNA was recovered and amplified using the whole genome amplification technique. The DNAs were hybridized with oligonucleotide probes containing the promoter regions of the human genome. The levels of hybridized DNA were quantified and genes directly bound by PAX5 were identified. Comparison between NALM6 cells transfected with the empty vector and PAX5C20S significantly reduced the background and allowed identification of genes directly regulated by PAX5 in NALM6, including BUB1B, SSSCA1, CEP68, and BAG1. BUB1B, CEP68 and SSSCA1 are proteins involved in mitosis; BAG1 is a protein associated with apoptosis. Dysregulation of these genes by overexpressed PAX5 may be associated with development of B-cell malignancies.

Blood ◽  
2006 ◽  
Vol 109 (8) ◽  
pp. 3417-3423 ◽  
Author(s):  
Marina Bousquet ◽  
Cyril Broccardo ◽  
Cathy Quelen ◽  
Fabienne Meggetto ◽  
Emilienne Kuhlein ◽  
...  

Abstract We report a novel t(7;9)(q11;p13) translocation in 2 patients with B-cell acute lymphoblastic leukemia (B-ALL). By fluorescent in situ hybridization and 3′ rapid amplification of cDNA ends, we showed that the paired box domain of PAX5 was fused with the elastin (ELN) gene. After cloning the full-length cDNA of the chimeric gene, confocal microscopy of transfected NIH3T3 cells and Burkitt lymphoma cells (DG75) demonstrated that PAX5-ELN was localized in the nucleus. Chromatin immunoprecipitation clearly indicated that PAX5-ELN retained the capability to bind CD19 and BLK promoter sequences. To analyze the functions of the chimeric protein, HeLa cells were cotransfected with a luc-CD19 construct, pcDNA3-PAX5, and with increasing amounts of pcDNA3-PAX5-ELN. Thus, in vitro, PAX5-ELN was able to block CD19 transcription. Furthermore, real-time quantitative polymerase chain reaction (RQ-PCR) experiments showed that PAX5-ELN was able to affect the transcription of endogenous PAX5 target genes. Since PAX5 is essential for B-cell differentiation, this translocation may account for the blockage of leukemic cells at the pre–B-cell stage. The mechanism involved in this process appears to be, at least in part, through a dominant-negative effect of PAX5-ELN on the wild-type PAX5 in a setting ofPAX5 haploinsufficiency.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3070-3070
Author(s):  
Shingo Kurahashi ◽  
Fumihiko Hayakawa ◽  
Yasuhiko Miyata ◽  
Yosuke Minami ◽  
Akihiro Abe ◽  
...  

Abstract Abstract 3070 Poster Board III-7 PAX5 is a transcription factor expressed in B lymphoid lineage from pro-B cell to mature B cell, and is required for B-cell development and maintenance. De-regulated and reduced PAX5 activity has been implicated in B cell malignancies both in human disease and mouse models. Recently, approximately 30% of childhood and adult B cell acute lymphoblastic leukemia have aberrancies in PAX5 gene such as deletions, point mutations, or chromosomal translocations. Chromosomal translocation t(9;15)(p13;q24) was found in 2 cases of childhood acute lymphoblastic leukemia and resulted in an in-frame fusion of PAX5 to PML gene. PAX5 moiety of PAX5-PML retains its DNA binding domain but loses its transactivation domain suggesting PAX5-PML will be a dominant negative form of PAX5. PML is originally found as a fusion partner of RARαa in PML-RARαa, an oncoprotein found in acute promyeloid leukemia (APL), and is now thought to be a tumor suppressor and a pro-apoptotic factor. PML-RARαa dominant-negatively affects PML function by disrupting PML nuclear bodies (NBs) where PML exerts its function and gives APL cells survival advantage. These findings give rise a speculation that PAX5-PML not only causes differentiation block by transcriptional repression of PAX5 target genes but also confers a survival advantage by inhibition of PML function. However, no functional analysis has been done for PAX5-PML. Here, we demonstrate that PAX5-PML had a dominant negative effect on both PAX5 and PML. PAX5-PML inhibited transcriptional activity of PAX5 in luciferase reporter assay. PAX5-PML expression also suppressed expression of CD19, one of the transcriptional targets of PAX5, in B-lymphoid cell line. Surprisingly, PAX5-PML hardly showed DNA binding activity in electro mobility shift assay although it retains DNA binding domain of PAX5, suggesting that inhibition of PAX5 DNA binding by occupation of PAX5 binding sites would not be the mechanism for PAX5-PML to inhibit PAX5 transcriptional activity. On the other hand, co-expression of PAX5-PML inhibited PML sumoylation, an essential post-translational modification for PML to form NBs, and altered PML localization from NB pattern to diffuse nuclear pattern. Furthermore, treatment with arsenic trioxide, a therapeutic reagent for APL which induces enhancement of PML sumoylation, reconstitution of PML NBs, and apoptosis in APL cells, induced recovery of PML sumoylation and reconstitution of PML NBs also in cells expressing PAX5-PML. More importantly, arsenic trioxide treatment of PAX5-PML expressing HeLa cells, which showed resistance to PML dependent apoptosis, overcame anti-apoptotic effect of PAX5-PML. These data suggest the involvement of this fusion protein in the leukemogenesis of B-ALL in dual-dominant negative manner and the possibility that some cases of ALL can be treated with arsenic trioxide. Disclosures Naoe: Kyowa Hakko Kirin, Wyeth and Chugai: Research Funding.


2015 ◽  
Vol 308 (10) ◽  
pp. L1014-L1024 ◽  
Author(s):  
BreAnne MacKenzie ◽  
Ingrid Henneke ◽  
Stefanie Hezel ◽  
Denise Al Alam ◽  
Elie El Agha ◽  
...  

Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury ( days 0– 11; days 0– 28) or during later stages ( days 6– 28 and 14– 28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.


2009 ◽  
Vol 29 (8) ◽  
pp. 2322-2334 ◽  
Author(s):  
Liora S. Katz ◽  
Yvan Gosmain ◽  
Eric Marthinet ◽  
Jacques Philippe

ABSTRACT Pax6 is important in the development of the pancreas and was previously shown to regulate pancreatic endocrine differentiation, as well as the insulin, glucagon, and somatostatin genes. Prohormone convertase 2 (PC2) is the main processing enzyme in pancreatic α cells, where it processes proglucagon to produce glucagon under the spatial and temporal control of 7B2, which functions as a molecular chaperone. To investigate the role of Pax6 in glucagon biosynthesis, we studied potential target genes in InR1G9 α cells transfected with Pax6 small interfering RNA and in InR1G9 clones expressing a dominant-negative form of Pax6. We now report that Pax6 controls the expression of the PC2 and 7B2 genes. By binding and transactivation studies, we found that Pax6 indirectly regulates PC2 gene transcription through cMaf and Beta2/NeuroD1 while it activates the 7B2 gene both directly and indirectly through the same transcription factors, cMaf and Beta2/NeuroD1. We conclude that Pax6 is critical for glucagon biosynthesis and processing by directly and indirectly activating the glucagon gene through cMaf and Beta2/NeuroD1, as well as the PC2 and 7B2 genes.


Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 234-241 ◽  
Author(s):  
Hitoshi Yoshida ◽  
Yoshiaki Tomiyama ◽  
Jun Ishikawa ◽  
Kenji Oritani ◽  
Itaru Matsumura ◽  
...  

Cell migration requires a dynamic interaction between the cell, its substrate, and the cytoskeleton-associated motile apparatus. Integrin-associated protein (IAP)/CD47 is a 50-kd cell surface protein that is physically associated with β3 integrins and that modulates the functions of β3 integrins in various cells. However, in B-lymphocytes that express β1 integrins but few β3 integrins, the roles of IAP/CD47 remain to be determined. Cross-linking of IAP/CD47 by the immobilized anti-IAP/CD47 monoclonal antibody (mAb) B6H12, but not 2D3, produced signals to promote polarization with lamellipodia, a characteristic morphology during leukocyte migration, in pre-B and mature B-cell lines (BALL, Nalm6, ONHL-1, Daudi), but not in myeloma cell lines (RPMI8226, OPM-2). In the presence of the immobilized fibronectin (FN), soluble B6H12 could increase the rate of the polarization and activate migratory activity of BALL cells to FN in a transwell filter assay. Furthermore, the dominant-negative form of CDC42 completely blocked B6H12-induced morphologic and functional changes without inhibiting phorbol 12-myristate 13-acetate–induced spreading on FN in BALL cells, whereas the dominant-negative form of Rac1 inhibited all these changes. These findings demonstrate that in B-lymphocytes, IAP/CD47 may transduce the signals to activate the migratory activity, in which CDC42 may be specifically involved, and that IAP/CD47 shows synergistic effect with 4β1 on B-cell migration. These findings would provide new insight into the role of IAP/CD47 on B-cell function.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1145-1145
Author(s):  
Ramesh C Nayak ◽  
Shiva Keshava ◽  
Usha Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Abstract 1145 Recent studies from our laboratory and others showed that endothelial cell protein C receptor (EPCR), the cellular receptor for protein C and activated protein C (APC), also serves as a receptor for factor VII (FVII) and activated factor VII (FVIIa). At present, the physiological importance of FVII/FVIIa binding to EPCR is largely unknown, but this interaction may play a role in the clearance or transport of FVII/FVIIa from circulation to tissues. Our recent studies showed that FVIIa (or APC) binding to EPCR promoted the endocytosis of EPCR via dynamin and caveolar-dependent pathways, and the endocytosed receptor-ligand complexes were accumulated in the recycling compartment (REC) before being targeted back to the cell surface (Blood 2009;114:1974-1986). Rab GTPases (Rab 4, Rab 5, Rab 7 and Rab 11 etc.), which localize to specific endosomal structures, have been shown to play crucial roles in the endocytic and exocytic pathways of receptor or receptor/ligand complexes. The role of these Ras-like small GTPases is unknown in endocytosis and trafficking of EPCR and EPCR/FVIIa complexes. The present study was undertaken in order to investigate the role of different Rab GTPases (Rab 4A, Rab 5 and Rab11) in the intracellular trafficking of EPCR and internalized FVIIa in endothelial cells. For this, we examined the effect of expressing wild-type (wt) or mutant Rab proteins on the intracellular distribution of FVIIa in human umbilical vein endothelial cells (HUVEC). The wild-type, constitutively active and dominant negative mutants of Rab 4A, Rab 5 and Rab 11 were cloned in adenoviral shuttle vector pacAd5 K-N pA CMV and the recombinant adenoviruses expressing these Rab GTPase variants were generated in human embryonic kidney (HEK) cells. HUVEC were infected with recombinant adenoviruses encoding for the wild-type, active or dominant negative mutant of Rab 4A, Rab 5 and Rab 11 (25 moi/cell). After culturing the cells for 24 h, they were incubated with recombinant FVIIa conjugated with Alexa fluor 488 fluorescent dye (AF488-FVIIa) for 1 h at 37°C. The intracellular distribution of FVIIa was analyzed by monitoring the fluorescence of AF488-FVIIa by confocal microscopy. The intracellular distribution of EPCR and Rab proteins was evaluated by confocal microscopy after immunofluorescence staining. Expression of Rab 4A wt or constitutively active Rab 4A (Q67L) forms led to accumulation of AF488-FVIIa within the Rab 4A positive early/sorting endosomes, whereas FVIIa accumulation in the REC was inhibited. In cells expressing Rab 4A dominant negative form (S22N), FVIIa was trafficked normally and accumulated in the REC. Rab 4A is known to regulate fusion of early and sorting endosomes, as well as recycling of the internalized receptor or receptor/ligand complexes from early/sorting endosomes back to the cell surface. Increased accumulation of FVIIa in early/sorting endosomes but a decrease in REC in HUVEC transduced to express wt and constitutively active Rab 4A, suggests that Rab 4A plays a role in the transport of internalized FVIIa and FVIIa-EPCR complexes from sorting endosomes back to the cell surface. HUVEC expressing Rab 5 wt or active mutant (Q79L) showed larger endosomal structures beneath the plasma membrane where EPCR and FVIIa were accumulated; very little FVIIa entered the REC. The trafficking of internalized FVIIa remained unaffected in HUVEC expressing Rab 5A dominant negative form (S34N). As Rab 5 is known to induce receptor internalization and fusion between early endosomes, the large endosomal structures containing AF488-FVIIa found in HUVEC expressing wt or constitutively active form but not in cells expressing the dominant negative form suggests that Rab 5 facilitates internalization of FVIIa-EPCR complexes. In contrast to the data obtained in HUVEC expressing Rab 4A and Rab 5, the intracellular trafficking of AF488-FVIIa remained unaffected in HUVEC expressing either wt or constitutively active Rab 11 mutant. Rab 11 dominant negative mutant (S34N) prevented the entry of AF488-FVIIa into REC. The observation that the dominant negative form of Rab 11 inhibits the entry of internalized FVIIa to the REC indicates that the activation of Rab 11 by GTP is required for the transport of FVIIa from sorting endosomes toward the recycling compartment. Overall our present data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR and internalized FVIIa in endothelial cells. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 22 (22) ◽  
pp. 8015-8025 ◽  
Author(s):  
Peter Åkerblad ◽  
Ulrika Lind ◽  
David Liberg ◽  
Krister Bamberg ◽  
Mikael Sigvardsson

ABSTRACT Olf-1/early B-cell factor (O/E-1) is a transcription factor important for B-lymphocyte and neuronal gene regulation. Here we report that all three known O/E genes (O/E-1, -2, and -3) are expressed in mouse adipose tissue and are upregulated during adipocyte differentiation. Forced expression of O/E-1 in either the preadipocyte cell line 3T3-L1 or mouse embryonic fibroblasts augmented adipogenesis, and constitutive expression of O/E-1 in uncommitted NIH 3T3 fibroblasts led to initiation of adipocyte differentiation. Furthermore, a dominant negative form of O/E-1 partially suppressed 3T3-L1 adipogenesis, indicating that expression from endogenous O/E target genes is required for 3T3-L1 terminal differentiation. Thus, our data point to the importance of O/E target genes for adipocyte differentiation and suggest a novel role for O/E-1 as an initiator and stimulator of adipogenesis.


2000 ◽  
Vol 20 (23) ◽  
pp. 8684-8695 ◽  
Author(s):  
Kuo-I Lin ◽  
Yi Lin ◽  
Kathryn Calame

ABSTRACT The importance of c-myc as a target of the Blimp-1 repressor has been studied in BCL-1 cells, in which Blimp-1 is sufficient to trigger terminal B-cell differentiation. Our data show that Blimp-1-dependent repression of c-myc is required for BCL-1 differentiation, since constitutive expression of c-Myc blocked differentiation. Furthermore, ectopic expression of cyclin E mimicked the effects of c-Myc on both proliferation and differentiation, indicating that the ability of c-Myc to drive proliferation is responsible for blocking BCL-1 differentiation. However, inhibition of c-Myc by a dominant negative form was not sufficient to drive BCL-1 differentiation. Thus, during Blimp-1-dependent plasma cell differentiation, repression of c-myc is necessary but not sufficient, demonstrating the existence of additional Blimp-1 target genes.


Sign in / Sign up

Export Citation Format

Share Document