The integrin alphavbeta6 is critical for keratinocyte migration on both its known ligand, fibronectin, and on vitronectin

1998 ◽  
Vol 111 (15) ◽  
pp. 2189-2195 ◽  
Author(s):  
X. Huang ◽  
J. Wu ◽  
S. Spong ◽  
D. Sheppard

The integrin alphavbeta6 is expressed on a variety of epithelial cells during dynamic processes including organogenesis, tissue injury and malignant transformation. However, because of the lack of tools to specifically inhibit the function of this integrin, little is known about its effects on cell behavior. To directly examine the role of this integrin in cell migration, we used keratinocytes derived from wild-type mice or mice expressing a null mutation in the beta6 subunit (beta6-/-) to perform migration assays in vitro. Migration on the known alphavbeta6 ligand, fibronectin was reduced in keratinocytes from beta6-/- mice. Interestingly, keratinocytes from beta6-/- mice also demonstrated markedly reduced migration on vitronectin, a protein not previously known to be a ligand for alphavbeta6. An anti-alphavbeta6 monoclonal antibody 10D5, generated by immunization of beta6-/- mice with murine keratinocytes, inhibited adhesion and migration of wild-type keratinocyte on both vitronectin and fibronectin to levels similar to those seen with keratinocytes from beta6-/- mice. alphavbeta6-mediated migration on both ligands was dramatically augmented by treatment with phorbol myrisate acetate (PMA) or with hepatocyte growth factor, and augmentation of migration by either stimulus could be abolished by the PKC inhibitor GF109203X, suggesting a critical role for PKC in enhancement of alphavbeta6-mediated cell migration.

2021 ◽  
Vol 22 (4) ◽  
pp. 1825
Author(s):  
Li Hao ◽  
Aaron J. Marshall ◽  
Lixin Liu

Bam32 (B cell adaptor molecule of 32 kDa) functions in the immune responses of various leukocytes. However, the role of neutrophil Bam32 in inflammation is entirely unknown. Here, we determined the role of Bam32 in chemokine CXCL2-induced neutrophil chemotaxis in three mouse models of neutrophil recruitment. By using intravital microscopy in the mouse cremaster muscle, we found that transmigrated neutrophil number, neutrophil chemotaxis velocity, and total neutrophil chemotaxis distance were increased in Bam32−/− mice when compared with wild-type (WT) mice. In CXCL2-induced mouse peritonitis, the total emigrated neutrophils were increased in Bam32−/− mice at 2 but not 4 h. The CXCL2-induced chemotaxis distance and migration velocity of isolated Bam32−/− neutrophils in vitro were increased. We examined the activation of small GTPases Rac1, Rac2, and Rap1; the levels of phospho-Akt2 and total Akt2; and their crosstalk with Bam32 in neutrophils. The deficiency of Bam32 suppressed Rap1 activation without changing the activation of Rac1 and Rac2. The pharmacological inhibition of Rap1 by geranylgeranyltransferase I inhibitor (GGTI298) increased WT neutrophil chemotaxis. In addition, the deficiency of Bam32, as well as the inhibition of Rap1 activation, increased the levels of CXCL2-induced Akt1/2 phosphorylation at Thr308/309 in neutrophils. The inhibition of Akt by SH-5 attenuated CXCL2-induced adhesion and emigration in Bam32−/− mice. Together, our results reveal that Bam32 has a suppressive role in chemokine-induced neutrophil chemotaxis by regulating Rap1 activation and that this role of Bam32 in chemokine-induced neutrophil recruitment relies on the activation of PI3K effector Akt.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


2005 ◽  
Vol 73 (3) ◽  
pp. 1820-1827 ◽  
Author(s):  
David J. McGee ◽  
Melanie L. Langford ◽  
Emily L. Watson ◽  
J. Elliot Carter ◽  
Yu-Ting Chen ◽  
...  

ABSTRACT Helicobacter pylori causes disease in the human stomach and in mouse and gerbil stomach models. Previous results have shown that motility is critical for H. pylori to colonize mice, gerbils, and other animal models. The role of chemotaxis, however, in colonization and disease is less well understood. Two genes in the H. pylori chemotaxis pathway, cheY and tlpB, which encode the chemotaxis response regulator and a methyl-accepting chemoreceptor, respectively, were disrupted. The cheY mutation was complemented with a wild-type copy of cheY inserted into the chromosomal rdxA gene. The cheY mutant lost chemotaxis but retained motility, while all other strains were motile and chemotactic in vitro. These strains were inoculated into gerbils either alone or in combination with the wild-type strain, and colonization and inflammation were assessed. While the cheY mutant completely failed to colonize gerbil stomachs, the tlpB mutant colonized at levels similar to those of the wild type. With the tlpB mutant, there was a substantial decrease in inflammation in the gerbil stomach compared to that with the wild type. Furthermore, there were differences in the numbers of each immune cell in the tlpB-mutant-infected stomach: the ratio of lymphocytes to neutrophils was about 8 to 1 in the wild type but only about 1 to 1 in the mutant. These results suggest that the TlpB chemoreceptor plays an important role in the inflammatory response while the CheY chemotaxis regulator plays a critical role in initial colonization. Chemotaxis mutants may provide new insights into the steps involved in H. pylori pathogenesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3469-3469
Author(s):  
Pratibha Singh ◽  
Seiji Fukuda ◽  
Janardhan Sampath ◽  
Louis M. Pelus

Abstract Interaction of CXCR4 expressed on hematopoietic stem and progenitor cells (HSPC) with bone-marrow stromal SDF-1 is believed to play a central role in retention or mobilization of HSPC. Recently, a mobilization regimen of G-CSF was shown to decrease osteoblast number resulting in reduced levels of bone-marrow SDF-1, however the detailed mechanism leading to this reduction is currently unknown. It is unlikely that G-CSF directly regulates osteoblast SDF-1 production since osteoblasts do not express G-CSF receptor. Proteolytic cleavage of SDF-1 by peptidase CD26 in the bone-marrow may be an alternative mechanism responsible for reduction of SDF-1 level. Although CD26 can cleave SDF-1 in vitro, direct evidence of SDF-1 cleavage by CD26 in vivo during G-CSF induced HSPC mobilization has not been demonstrated. We previously demonstrated that neutrophils are required for G-CSF induced HSPC mobilization and that CD26 expression on neutrophils, rather than HSPC, is critical for mobilization. To more fully understand the role of CD26 in altering SDF-1 protein/activity during G-CSF induced HSPC mobilization, we quantitated bone-marrow SDF-1 levels in CD26−/− and wild-type CD26+/+ mice by ELISA during G-CSF administration. A standard 4 day G-CSF mobilization regimen (100 μg/kg bid, sc × 4 days) decreased bone-marrow total SDF-1 from 4.55±0.3 to 0.52±0.06 ng/femur in wild-type CD26+/+ mice (8.7-fold) and from 4.51±0.3 to 0.53±0.05 ng/femur (8.5-fold) in CD26−/− mice. However, despite an equivalent decrease in SDF-1, total CFU mobilization and the absolute number of mobilized SKL cells were decreased (3.1 and 2.0 fold lower, respectively) in CD26−/− mice compared to wild-type CD26+/+ controls. These results suggest that the decrease in total SDF-1 level in marrow seen following G-CSF treatment is independent of CD26. Cytological examination of bone-marrow smears showed that the reduction in SDF-1 levels in bone-marrow of both wild-type CD26+/+ and CD26−/− mice following G-CSF administration correlated with an increase in total absolute bone-marrow neutrophil cell number, suggesting a role for neutrophils in modulation of SDF-1 protein. To determine if neutrophils affect osteoblast SDF-1 production, bone marrow Gr-1+ neutrophils from wild-type CD26+/+ and CD26−/− mice were purified using anti-Ly6G magnetic beads and co-cultured with MC3T3-E1 preosteoblasts in vitro. Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased pre-osteoblast SDF-1 production by similar amounts (15.4-fold vs 14.8-fold respectively), while Gr-1 neg cells from both wild-type CD26+/+ or CD26−/− were without effect on SDF-1 levels. Similarly, Gr-1+ neutrophils from both wild-type and CD26−/− mice decreased SDF-1 produced by MC3T3-E1-derived osteoblasts from 1.85±0.3 to 0.52±0.06 ng/ml (3.5 fold) and 0.56±0.07 ng/ml (3.3 fold) respectively, with Gr-1neg cells having no effect. Gr-1+ neutrophils either from wild-type or CD26−/− mice, but not Gr-1neg cells, significantly induced apoptosis of MC3T3-E1 cells as measured by Annexin-V staining (70.5%±10.2 vs 71.2%±12.5 for wild-type CD26+/+ and CD26−/− neutrophils respectively) and significantly inhibited osteoblast activity (20-fold vs 20.6-fold for CD26+/+ and CD26−/− neutrophils respectively) as measured by osteocalcin expression. Furthermore, irrespective of G-CSF treatment, an inverse correlation between absolute neutrophil number and SDF-1 protein levels was observed, suggesting that G-CSF induces neutrophil expansion but does not directly affect SDF-1 production. Collectively, these results provide additional support for the critical role of neutrophils in G-CSF induced mobilization and strongly suggested that neutrophils directly regulate bone-marrow SDF-1 levels independent of CD26 activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
D. Cruz-Zárate ◽  
O. López-Ortega ◽  
D. A. Girón-Pérez ◽  
A. M. Gonzalez-Suarez ◽  
J. L. García-Cordero ◽  
...  

AbstractCell migration is a dynamic process that involves adhesion molecules and the deformation of the moving cell that depends on cytoskeletal remodeling and actin-modulating proteins such as myosins. In this work, we analyzed the role of the class I Myosin-1 g (Myo1g) in migratory processes of LPS + IL-4 activated B lymphocytes in vivo and in vitro. In vivo, the absence of Myo1g reduced homing of activated B lymphocytes into the inguinal lymph node. Using microchannel chambers and morphology analysis, we found that the lack of Myo1g caused adhesion and chemotaxis defects. Additionally, deficiency in Myo1g causes flaws in adopting a migratory morphology. Our results highlight the importance of Myo1g during B cell migration.


2000 ◽  
Vol 148 (5) ◽  
pp. 957-970 ◽  
Author(s):  
Valérie Petit ◽  
Brigitte Boyer ◽  
Delphine Lentz ◽  
Christopher E. Turner ◽  
Jean Paul Thiery ◽  
...  

Identification of signaling molecules that regulate cell migration is important for understanding fundamental processes in development and the origin of various pathological conditions. The migration of Nara Bladder Tumor II (NBT-II) cells was used to determine which signaling molecules are specifically involved in the collagen-mediated locomotion. We show here that paxillin is tyrosine phosphorylated after induction of motility on collagen. Overexpression of paxillin mutants in which tyrosine 31 and/or tyrosine 118 were replaced by phenylalanine effectively impaired cell motility. Moreover, stimulation of motility by collagen preferentially enhanced the association of paxillin with the SH2 domain of the adaptor protein CrkII. Mutations in both tyrosine 31 and 118 diminished the phosphotyrosine content of paxillin and prevented the formation of the paxillin–Crk complex, suggesting that this association is necessary for collagen-mediated NBT-II cell migration. Other responses to collagen, such as cell adhesion and spreading, were not affected by these mutations. Overexpression of wild-type paxillin or Crk could bypass the migration-deficient phenotype. Both the SH2 and the SH3 domains of CrkII are shown to play a critical role in this collagen-mediated migration. These results demonstrate the important role of the paxillin–Crk complex in the collagen-induced cell motility.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1800-1800
Author(s):  
Mohamed A. Zayed ◽  
Andrew McFadden ◽  
Weiping Yuan ◽  
Mary E. Hartnett ◽  
Dan Chalothorn ◽  
...  

Abstract CIB1, a 22kDa EF-hand containing calcium binding protein, was originally identified in a yeast two-hybrid screen as a binding partner for the cytoplasmic tail of the platelet integrin αIIb. CIB1 also associates with a number of kinases and modulates their activity, suggesting that CIB1 is an important regulatory molecule. Recently, we found that CIB1 is expressed in multiple endothelial cell (EC) types. We therefore tested the role of CIB1 in EC function in vitro, and in angiogenesis both ex vivo and in vivo. To test the role of CIB1 in EC function in vitro, we reduced endogenous CIB1 levels in ECs by RNA interference with an shRNA-delivered by lentivirus. CIB1 depletion significantly decreased EC haptotaxis on fibronectin and EC vascular tube formation on growth factor-reduced Matrigel. Treatment with FGF-2, an angiogenic factor, did not counter the observed inhibition of haptotaxis and tube formation by shRNA against CIB1. However, CIB1 overexpression enhanced FGF-2-induced EC haptotaxis relative to control cells. Similarly, ECs derived from CIB1 null mice exhibited a significant decrease in haptotaxis, tube formation, and proliferation compared to ECs isolated from wild-type littermate controls. In ex vivo aortic ring and tibialis anterior muscle culture assays, CIB1 null cultures supplemented with serum or FGF-2 demonstrated reduced blood vessel sprouting compared to wild-type littermate control cultures. Finally, in vivo assays for hyperoxic retinal angiogenesis and hind-limb induced-ischemia revealed a decrease in post-ischemia retinal neovascularization and Doppler hind-limb blood perfusion recovery, although developmental retinal angiogenesis in CIB1 null mice appeared normal. In conclusion, these findings support a critical role for CIB1 in EC function that appears to be important for ischemia-induced angiogenesis.


2012 ◽  
Vol 442 (2) ◽  
pp. 403-412 ◽  
Author(s):  
Yi-Ling Chen ◽  
Kai-Fa Huang ◽  
Wen-Chih Kuo ◽  
Yan-Chung Lo ◽  
Yu-May Lee ◽  
...  

QC (glutaminyl cyclase) catalyses the formation of N-terminal pGlu (pyroglutamate) in peptides and proteins. pGlu formation in chemoattractants may participate in the regulation of macrophage activation and migration. However, a clear molecular mechanism for the regulation is lacking. The present study examines the role of QC-mediated pGlu formation on MCPs (monocyte chemoattractant proteins) in inflammation. We demonstrated in vitro the pGlu formation on MCPs by QC using MS. A potent QC inhibitor, PBD150, significantly reduced the N-terminal uncyclized-MCP-stimulated monocyte migration, whereas pGlu-containing MCP-induced cell migration was unaffected. QC small interfering RNA revealed a similar inhibitory effect. Lastly, we demonstrated that inhibiting QC can attenuate cell migration by lipopolysaccharide. These results strongly suggest that QC-catalysed N-terminal pGlu formation of MCPs is required for monocyte migration and provide new insights into the role of QC in the inflammation process. Our results also suggest that QC could be a drug target for some inflammatory disorders.


2015 ◽  
Vol 26 (20) ◽  
pp. 3658-3670 ◽  
Author(s):  
Bo Shen ◽  
Brian Estevez ◽  
Zheng Xu ◽  
Barry Kreutz ◽  
Andrei Karginov ◽  
...  

Heterotrimeric G protein Gα13 is known to transmit G protein–coupled receptor (GPCR) signals leading to activation of RhoA and plays a role in cell migration. The mechanism underlying the role of Gα13 in cell migration, however, remains unclear. Recently we found that Gα13 interacts with the cytoplasmic domain of integrin β3 subunits in platelets via a conserved ExE motif. Here we show that a similar direct interaction between Gα13 and the cytoplasmic domain of the integrin β1 subunit plays a critical role in β1-dependent cell migration. Point mutation of either glutamic acid in the Gα13-binding 767EKE motif in β1 or treatment with a peptide derived from the Gα13-binding sequence of β1 abolished Gα13–β1 interaction and inhibited β1 integrin–dependent cell spreading and migration. We further show that the Gα13-β1 interaction mediates β1 integrin–dependent Src activation and transient RhoA inhibition during initial cell adhesion, which is in contrast to the role of Gα13 in mediating GPCR-dependent RhoA activation. These data indicate that Gα13 plays dynamic roles in both stimulating RhoA via a GPCR pathway and inhibiting RhoA via an integrin signaling pathway. This dynamic regulation of RhoA activity is critical for cell migration on β1 integrin ligands.


Sign in / Sign up

Export Citation Format

Share Document