scholarly journals The interaction of Gα13 with integrin β1 mediates cell migration by dynamic regulation of RhoA

2015 ◽  
Vol 26 (20) ◽  
pp. 3658-3670 ◽  
Author(s):  
Bo Shen ◽  
Brian Estevez ◽  
Zheng Xu ◽  
Barry Kreutz ◽  
Andrei Karginov ◽  
...  

Heterotrimeric G protein Gα13 is known to transmit G protein–coupled receptor (GPCR) signals leading to activation of RhoA and plays a role in cell migration. The mechanism underlying the role of Gα13 in cell migration, however, remains unclear. Recently we found that Gα13 interacts with the cytoplasmic domain of integrin β3 subunits in platelets via a conserved ExE motif. Here we show that a similar direct interaction between Gα13 and the cytoplasmic domain of the integrin β1 subunit plays a critical role in β1-dependent cell migration. Point mutation of either glutamic acid in the Gα13-binding 767EKE motif in β1 or treatment with a peptide derived from the Gα13-binding sequence of β1 abolished Gα13–β1 interaction and inhibited β1 integrin–dependent cell spreading and migration. We further show that the Gα13-β1 interaction mediates β1 integrin–dependent Src activation and transient RhoA inhibition during initial cell adhesion, which is in contrast to the role of Gα13 in mediating GPCR-dependent RhoA activation. These data indicate that Gα13 plays dynamic roles in both stimulating RhoA via a GPCR pathway and inhibiting RhoA via an integrin signaling pathway. This dynamic regulation of RhoA activity is critical for cell migration on β1 integrin ligands.

1998 ◽  
Vol 111 (15) ◽  
pp. 2189-2195 ◽  
Author(s):  
X. Huang ◽  
J. Wu ◽  
S. Spong ◽  
D. Sheppard

The integrin alphavbeta6 is expressed on a variety of epithelial cells during dynamic processes including organogenesis, tissue injury and malignant transformation. However, because of the lack of tools to specifically inhibit the function of this integrin, little is known about its effects on cell behavior. To directly examine the role of this integrin in cell migration, we used keratinocytes derived from wild-type mice or mice expressing a null mutation in the beta6 subunit (beta6-/-) to perform migration assays in vitro. Migration on the known alphavbeta6 ligand, fibronectin was reduced in keratinocytes from beta6-/- mice. Interestingly, keratinocytes from beta6-/- mice also demonstrated markedly reduced migration on vitronectin, a protein not previously known to be a ligand for alphavbeta6. An anti-alphavbeta6 monoclonal antibody 10D5, generated by immunization of beta6-/- mice with murine keratinocytes, inhibited adhesion and migration of wild-type keratinocyte on both vitronectin and fibronectin to levels similar to those seen with keratinocytes from beta6-/- mice. alphavbeta6-mediated migration on both ligands was dramatically augmented by treatment with phorbol myrisate acetate (PMA) or with hepatocyte growth factor, and augmentation of migration by either stimulus could be abolished by the PKC inhibitor GF109203X, suggesting a critical role for PKC in enhancement of alphavbeta6-mediated cell migration.


1998 ◽  
Vol 111 (11) ◽  
pp. 1595-1601 ◽  
Author(s):  
D. Peck ◽  
C.M. Isacke

CD44 is the principle transmembrane receptor for the extracellular matrix glycosaminoglycan hyaluronan. This receptor:ligand interaction plays an essential role in a number of physiological events including tumour progression, lymphocyte homing into inflammatory sites and tissue morphogenesis during development. In previous studies we have shown that serine phosphorylation is a critical control mechanism for CD44-dependent cell migration. Here we have investigated the target phosphorylation residues by mutating them individually or in combination. These studies demonstrate that Ser325 is the principle CD44 phosphorylation site and that mutation of this residue blocks CD44-mediated cell migration but not hyaluronan binding. In addition, we show that an upstream Ser323 residue is required as part of the kinase consensus site. To further characterize the role of CD44 phosphorylation, phosphorylated and non-phosphorylated peptides spanning the Ser325 region were synthesised and linked to a 16 amino acid Penetratin sequence to mediate efficient plasma membrane translocation. Peptides containing a phosphoserine at residue 325 are efficient blockers of CD44-mediated cell migration but do not reduce CD44 expression or its ability to bind hyaluronan. These data strongly argue that CD44 adhesion and migration are regulated by distinct mechanisms and that migration requires the specific interaction of intracellular component(s) with phosphorylated CD44 receptors.


2019 ◽  
Vol 18 (1) ◽  
pp. 78-87 ◽  
Author(s):  
Jian-kai Yang ◽  
Hong-jiang Liu ◽  
Yuanyu Wang ◽  
Chen Li ◽  
Ji-peng Yang ◽  
...  

Background and Objective: Exosomes communicate inter-cellularly and miRNAs play critical roles in this scenario. MiR-214-5p was implicated in multiple tumors with diverse functions uncovered. However, whether miR-214-5p is mechanistically involved in glioblastoma, especially via exosomal pathway, is still elusive. Here we sought to comprehensively address the critical role of exosomal miR-214-5p in glioblastoma (GBM) microenvironment.Methods:The relative expression of miR-214-5p was determined by real-time PCR. Cell viability and migration were measured by MTT and transwell chamber assays, respectively. The secretory cytokines were measured with ELISA kits. The regulatory effect of miR-214-5p on CXCR5 expression was interrogated by luciferase reporter assay. Protein level was analyzed by Western blot.Results:We demonstrated that miR-214-5p was aberrantly overexpressed in GBM and associated with poorer clinical prognosis. High level of miR-214-5p significantly contributed to cell proliferation and migration. GBM-derived exosomal miR-214-5p promoted inflammatory response in primary microglia upon lipopolysaccharide challenge. We further identified CXCR5 as the direct target of miR-214- 5p in this setting.Conclusion:Overexpression of miR-214-5p in GBM modulated the inflammatory response in microglia via exosomal transfer.


2009 ◽  
Vol 187 (7) ◽  
pp. 1101-1116 ◽  
Author(s):  
Chiara Francavilla ◽  
Paola Cattaneo ◽  
Vladimir Berezin ◽  
Elisabeth Bock ◽  
Diletta Ami ◽  
...  

Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Robert Köchl ◽  
Lesley Vanes ◽  
Miriam Llorian Sopena ◽  
Probir Chakravarty ◽  
Harald Hartweger ◽  
...  

WNK1, a kinase that controls kidney salt homeostasis, also regulates adhesion and migration in CD4+ T cells. Wnk1 is highly expressed in thymocytes, and since migration is important for thymocyte maturation, we investigated a role for WNK1 in mouse thymocyte development. We find that WNK1 is required for the transition of double negative (DN) thymocytes through the β-selection checkpoint and subsequent proliferation and differentiation into double positive (DP) thymocytes. Furthermore, we show that WNK1 negatively regulates LFA1-mediated adhesion and positively regulates CXCL12-induced migration in DN thymocytes. Despite this, migration defects of WNK1-deficient thymocytes do not account for the developmental arrest. Instead, we show that in DN thymocytes WNK1 transduces pre-TCR signals via OXSR1 and STK39 kinases, and the SLC12A2 ion co-transporter that are required for post-transcriptional upregulation of MYC and subsequent proliferation and differentiation into DP thymocytes. Thus, a pathway regulating ion homeostasis is a critical regulator of thymocyte development.


2013 ◽  
Vol 24 (3) ◽  
pp. 261-273 ◽  
Author(s):  
Emilio Tejera ◽  
Vera Rocha-Perugini ◽  
Soraya López-Martín ◽  
Daniel Pérez-Hernández ◽  
Alexia I. Bachir ◽  
...  

CD81 is a member of the tetraspanin family that has been described to have a key role in cell migration of tumor and immune cells. To unravel the mechanisms of CD81-regulated cell migration, we performed proteomic analyses that revealed an interaction of the tetraspanin C-terminal domain with the small GTPase Rac. Direct interaction was confirmed biochemically. Moreover, microscopy cross-correlation analysis demonstrated the in situ integration of both molecules into the same molecular complex. Pull-down experiments revealed that CD81-Rac interaction was direct and independent of Rac activation status. Knockdown of CD81 resulted in enhanced protrusion rate, altered focal adhesion formation, and decreased cell migration, correlating with increased active Rac. Reexpression of wild-type CD81, but not its truncated form lacking the C-terminal cytoplasmic domain, rescued these effects. The phenotype of CD81 knockdown cells was mimicked by treatment with a soluble peptide with the C-terminal sequence of the tetraspanin. Our data show that the interaction of Rac with the C-terminal cytoplasmic domain of CD81 is a novel regulatory mechanism of the GTPase activity turnover. Furthermore, they provide a novel mechanism for tetraspanin-dependent regulation of cell motility and open new avenues for tetraspanin-targeted reagents by the use of cell-permeable peptides.


2010 ◽  
Author(s):  
Antoine Dufour ◽  
Nicole S. Sampson ◽  
Cem Kuscu ◽  
Stanley Zucker ◽  
Jian Cao

Sign in / Sign up

Export Citation Format

Share Document