Centrosome dynamics in early embryos of Caenorhabditis elegans

1998 ◽  
Vol 111 (20) ◽  
pp. 3027-3033 ◽  
Author(s):  
H.H. Keating ◽  
J.G. White

The early Caenorhabditis elegans embryo divides with a stereotyped pattern of cleavages to produce cells that vary in developmental potential. Differences in cleavage plane orientation arise between the anterior and posterior cells of the 2-cell embryo as a result of asymmetries in centrosome positioning. Mechanisms that position centrosomes are thought to involve interactions between microtubules and the cortex, however, these mechanisms remain poorly defined. Interestingly, in the early embryo the shape of the centrosome predicts its subsequent movement. We have used rhodamine-tubulin and live imaging techniques to study the development of asymmetries in centrosome morphology and positioning. In contrast to studies using fixed embryos, our images provide a detailed characterization of the dynamics of centrosome flattening. In addition, our observations of centrosome behavior in vivo challenge previous assumptions regarding centrosome separation by illustrating that centrosome flattening and daughter centrosome separation are distinct processes, and by revealing that nascent daughter centrosomes may become separated from the nucleus. Finally, we provide evidence that the midbody specifies a region of the cortex that directs rotational alignment of the centrosome-nucleus complex and that the process is likely to involve multiple interactions between microtubules and the cortex; the process of alignment involves oscillations and overshoots, suggesting a multiplicity of cortical sites that interact with microtubules.

Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2874
Author(s):  
Hengfeng Yuan ◽  
Wen Jiang ◽  
Yuanxin Chen ◽  
Betty Kim

Ischemic injuries and local hypoxia can result in osteocytes dysfunction and play a key role in the pathogenesis of avascular osteonecrosis. Conventional imaging techniques including magnetic resonance imaging (MRI) and computed tomography (CT) can reveal structural and functional changes within bony anatomy; however, characterization of osteocyte behavioral dynamics in the setting of osteonecrosis at the single cell resolution is limited. Here, we demonstrate an optical approach to study real-time osteocyte functions in vivo. Using nicotinamide adenine dinucleotide (NADH) as a biomarker for metabolic dynamics in osteocytes, we showed that NADH level within osteocytes transiently increase significantly after local ischemia through non-invasive photo-induced thrombosis of afferent arterioles followed by a steady decline. Our study presents a non-invasive optical approach to study osteocyte behavior through the modulation of local environmental conditions. Thus it provides a powerful toolkit to study cellular processes involved in bone pathologies in vivo.


2018 ◽  
Vol 132 (23) ◽  
pp. 2469-2481 ◽  
Author(s):  
Scott Hoffmann ◽  
Linda Mullins ◽  
Charlotte Buckley ◽  
Sebastien Rider ◽  
John Mullins

The renin–angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.


Cell ◽  
1980 ◽  
Vol 19 (3) ◽  
pp. 569-577 ◽  
Author(s):  
J LAUFER ◽  
P BAZZICALUPO ◽  
W WOOD

Reproduction ◽  
2016 ◽  
Vol 152 (4) ◽  
pp. R127-R141 ◽  
Author(s):  
Veronica Maillo ◽  
Maria Jesus Sánchez-Calabuig ◽  
Ricaurte Lopera-Vasquez ◽  
Meriem Hamdi ◽  
Alfonso Gutierrez-Adan ◽  
...  

The oviduct is a complex and organized thin tubular structure connecting the ovary with the uterus. It is the site of final sperm capacitation, oocyte fertilization and, in most species, the first 3–4days of early embryo development. The oviductal epithelium is made up of ciliary and secretory cells responsible for the secretion of proteins and other factors which contribute to the formation of the oviductal fluid. Despite significant research, most of the pathways and oviductal factors implicated in the crosstalk between gametes/early embryo and the oviduct remain unknown. Therefore, studying the oviductal environment is crucial to improve our understanding of the regulatory mechanisms controlling fertilization and embryo development. In vitro systems are a valuable tool to study in vivo pathways and mechanisms, particularly those in the oviducts which in livestock species are challenging to access. In studies of gamete and embryo interaction with the reproductive tract, oviductal epithelial cells, oviductal fluid and microvesicles co-cultured with gametes/embryos represent the most appropriate in vitro models to mimic the physiological conditions in vivo.


2016 ◽  
Vol 216 (1) ◽  
pp. 41-51 ◽  
Author(s):  
Enrico Monachino ◽  
Lisanne M. Spenkelink ◽  
Antoine M. van Oijen

Single-molecule manipulation and imaging techniques have become important elements of the biologist’s toolkit to gain mechanistic insights into cellular processes. By removing ensemble averaging, single-molecule methods provide unique access to the dynamic behavior of biomolecules. Recently, the use of these approaches has expanded to the study of complex multiprotein systems and has enabled detailed characterization of the behavior of individual molecules inside living cells. In this review, we provide an overview of the various force- and fluorescence-based single-molecule methods with applications both in vitro and in vivo, highlighting these advances by describing their applications in studies on cytoskeletal motors and DNA replication. We also discuss how single-molecule approaches have increased our understanding of the dynamic behavior of complex multiprotein systems. These methods have shown that the behavior of multicomponent protein complexes is highly stochastic and less linear and deterministic than previously thought. Further development of single-molecule tools will help to elucidate the molecular dynamics of these complex systems both inside the cell and in solutions with purified components.


1990 ◽  
Vol 217 ◽  
Author(s):  
Leoncio Garrido ◽  
Bettina Pfleiderer ◽  
Jerome L. Ackerman ◽  
John Moore

ABSTRACTSilicone based biomaterials are characterized with NMR. Bulk spin-lattice (T1) and spin-spin (T2) relaxation times are measured in polydimethylsiloxane (PDMS) model networks and various types of implants. The T2 results seem to indicate that crosslink densities of these biomaterials are lower than those of the PDMS model networks studied. 1H chemical shift NMR imaging techniques are developed to investigate the aging (e.g., migration of free polymer, rupture due to mechanical stress, etc.) of biomaterials in vivo.


Reproduction ◽  
2019 ◽  
Vol 158 (1) ◽  
pp. 85-94 ◽  
Author(s):  
Meriem Hamdi ◽  
María J Sánchez-Calabuig ◽  
Beatriz Rodríguez-Alonso ◽  
Sandra Bagés Arnal ◽  
Kalliopi Roussi ◽  
...  

During its journey through the oviduct, the bovine embryo may induce transcriptomic and metabolic responses, via direct or indirect contact, from bovine oviduct epithelial cells (BOECs). An in vitro model using polyester mesh was established, allowing the study of the local contact during 48 h between a BOEC monolayer and early embryos (2- or 8-cell stage) or their respective conditioned media (CM). The transcriptomic response of BOEC to early embryos was assessed by analyzing the transcript abundance of SMAD6, TDGF1, ROCK1, ROCK2, SOCS3, PRELP and AGR3 selected from previous in vivo studies and GPX4, NFE2L2, SCN9A, EPSTI1 and IGFBP3 selected from in vitro studies. Moreover, metabolic analyses were performed on the media obtained from the co-culture. Results revealed that presence of early embryos or their CM altered the BOEC expression of NFE2L2, GPX4, SMAD6, IGFBP3, ROCK2 and SCN9A. However, the response of BOEC to two-cell embryos or their CM was different from that observed to eight-cell embryos or their CM. Analysis of energy substrates and amino acids revealed that BOEC metabolism was not affected by the presence of early embryos or by their CM. Interestingly, embryo metabolism before embryo genome activation (EGA) seems to be independent of exogenous sources of energy. In conclusion, this study confirms that early embryos affect BOEC transcriptome and BOEC response was embryo stage specific. Moreover, embryo affects BOEC via a direct contact or via its secretions. However transcriptomic response of BOEC to the embryo did not manifest as an observable metabolic response.


2009 ◽  
Vol 21 (9) ◽  
pp. 63
Author(s):  
L. Ganeshan ◽  
C. O'Neill

The developmental viability of the early embryo requires the formation of the inner cell mass (ICM) at the blastocyst stage. The ICM contributes to all cell lineages within the developing embryo in vivo and the embryonic stem cell (ESC) lineage in vitro. Commitment of cells to the ICM lineage and its pluripotency requires the expression of core transcription factors, including Nanog and Pou5f1 (Oct4). Embryos subjected to culture in vitro commonly display a reduced developmental potential. Much of this loss of viability is due to the up-regulation of TRP53 in affected embryos. This study investigated whether increased TRP53 disrupts the expression of the pluripotency proteins and the normal formation of the ICM lineage. Mouse C57BL6 morulae and blastocysts cultured from zygotes (modHTF media) possessed fewer (p < 0.001) NANOG-positive cells than equivalent stage embryos collected fresh from the uterus. Blocking TRP53 actions by either genetic deletion (Trp53–/–) or pharmacological inhibition (Pifithrin-α) reversed this loss of NANOG expression during culture. Zygote culture also resulted in a TRP53-dependent loss of POU5F1-positive cells from resulting blastocysts. Drug-induced expression of TRP53 (by Nutlin-3) also caused a reduction in formation of pluripotent ICM. The loss of NANOG- and POU5F1-positive cells caused a marked reduction in the capacity of blastocysts to form proliferating ICM after outgrowth, and a consequent reduced ability to form ESC lines. These poor outcomes were ameliorated by the absence of TRP53, resulting in transmission distortion in favour of Trp53–/– zygotes (p < 0.001). This study shows that stresses induced by culture caused TRP53-dependent loss of pluripotent cells from the early embryo. This is a cause of the relative loss of viability and developmental potential of cultured embryos. The preferential survival of Trp53–/– embryos after culture due to their improved formation of pluripotent cells creates a genetic danger associated with these technologies.


1993 ◽  
Vol 7 (7a) ◽  
pp. 1244-1253 ◽  
Author(s):  
J C Vos ◽  
H G van Luenen ◽  
R H Plasterk

Sign in / Sign up

Export Citation Format

Share Document