A constitutive region is responsible for nuclear targeting of 4.1R: modulation by alternative sequences results in differential intracellular localization

2000 ◽  
Vol 113 (13) ◽  
pp. 2485-2495 ◽  
Author(s):  
C.M. Luque ◽  
I. Correas

Red blood cell protein 4.1, 4.1R, is an extreme variation on the theme of isoform multiplicity. The diverse 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, are localized at different intracellular sites, including the nucleus. To characterize nonerythroid 4.1 proteins lacking the most upstream translation initiation site, analyze their intracellular localization and define specific domains involved in differential intracellular targeting of 4.1R, we cloned 4.1 cDNAs lacking that translation initiation site. Seven different 4.1R cDNAs were isolated. Four of these encoded 4.1R proteins localized predominantly to the nucleus and the other three localized to the cytoplasm. Three of the nuclear 4.1R isoforms did not contain the nuclear localization signal previously identified in the alternative exon 16. A comparative analysis of the exon composition of the naturally occurring 4.1R cDNAs cloned and of appropriate composite cDNA constructs, with the subcellular distribution of their respective products, demonstrated that a region encoded by constitutive exons, which is therefore common to all 4.1R isoforms and has been termed ‘core region’, had the capacity of localizing to the nucleus. This region was able to confer nuclear targeting to a cytosolic reporter. In protein 4.1R isoforms, the nuclear targeting of the core region is modulated by the expression of alternative exons. Thus, exon 5-encoded sequences eclipsed nuclear entry of the core region, resulting in 4.1R isoforms that predominantly distributed to the cytoplasm. Exon 5 was also able to confer cytoplasmic localization to a nuclear reporter. In protein 4.1R isoforms, when exons 5 and 16 were both expressed the nuclear targeting effect of exon 16 was dominant to the inhibitory effect observed by the expression of exon 5, yielding proteins that predominantly localized to the nucleus. Taken together, these results indicate that all 4.1R molecules contain a conserved region that is sufficient to target the protein to the nucleus, but that specific exon-encoded sequences modulate this capacity by acting in a hierarchical order.

2006 ◽  
Vol 128 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Rocio K. Finol-Urdaneta ◽  
Nina Strüver ◽  
Heinrich Terlau

Ion channels are membrane-spanning proteins that allow ions to permeate at high rates. The kinetic characteristics of the channels present in a cell determine the cell signaling profile and therefore cell function in many different physiological processes. We found that Kv1.7 channels from mouse heart muscle have two putative translation initiation start sites that generate two channel isoforms with different functional characteristics, mKv1.7L (489 aa) and a shorter mKv1.7S (457 aa). The electrophysiological analysis of mKv1.7L and mKv1.7S channels revealed that the two channel isoforms have different inactivation kinetics. The channel resulting from the longer protein (L) inactivates faster than the shorter channels (S). Our data supports the hypothesis that mKv1.7L channels inactivate predominantly due to an N-type related mechanism, which is impaired in the mKv1.7S form. Furthermore, only the longer version mKv1.7L is regulated by the cell redox state, whereas the shorter form mKv1.7S is not. Thus, expression starting at each translation initiation site results in significant functional divergence. Our data suggest that the redox modulation of mKv1.7L may occur through a site in the cytoplasmic N-terminal domain that seems to encompass a metal coordination motif resembling those found in many redox-sensitive proteins. The mRNA expression profile and redox modulation of mKv1.7 kinetics identify these channels as molecular entities of potential importance in cellular redox-stress states such as hypoxia.


2018 ◽  
Author(s):  
M Arabfard ◽  
K Kavousi ◽  
A Delbari ◽  
M Ohadi

AbstractRecent work in yeast and humans suggest that evolutionary divergence in cis-regulatory sequences impact translation initiation sites (TISs). Cis-elements can also affect the efficacy and amount of protein synthesis. Despite their vast biological implication, the landscape and relevance of short tandem repeats (STRs)/microsatellites to the human protein-coding gene TISs remain largely unknown. Here we characterized the STR distribution at the 120 bp cDNA sequence upstream of all annotated human protein-coding gene TISs based on the Ensembl database. Furthermore, we performed a comparative genomics study of all annotated orthologous TIS-flanking sequences across 47 vertebrate species (755,956 transcripts), aimed at identifying human-specific STRs in this interval. We also hypothesized that STRs may be used as genetic codes for the initiation of translation. The initial five amino acid sequences (excluding the initial methionine) that were flanked by STRs in human were BLASTed against the initial orthologous five amino acids in other vertebrate species (2,025,817 pair-wise TIS comparisons) in order to compare the number of events in which human-specific and non-specific STRs occurred with homologous and non-homologous TISs (i.e. ≥50% and <50% similarity of the five amino acids). We characterized human-specific STRs and a bias of this compartment in comparison to the overall (human-specific and non-specific) distribution of STRs (Mann Whitney p=1.4 × 10−11). We also found significant enrichment of non-homologous TISs flanked by human-specific STRs (p<0.00001). In conclusion, our data indicate a link between STRs and TIS selection, which is supported by differential evolution of the human-specific STRs in the TIS upstream flanking sequence.AbbreviationscDNAComplementary DNACDSCoding DNA sequenceSTRShort Tandem RepeatTISTranslation Initiation SiteTSSTranscription Start Site


2017 ◽  
Vol 29 (1) ◽  
pp. 153
Author(s):  
K. Uh ◽  
J. Ryu ◽  
C. Ray ◽  
K. Lee

Ten-eleven translocation (TET) enzymes catalyse oxidation of 5-methylcytosine to 5-hydroxymethyl cytosine. This TET-mediated conversion of 5-methylcytosine to 5-hydroxymethyl cytosine is implicated in initiating the DNA demethylation process, observed post-fertilization. Three members (TET1–3) of the TET family are differentially expressed during embryo development and appear to have different roles. Previous studies in mice suggest that TET1 is a key regulator in maintaining pluripotency in embryonic stem cells by managing epigenetic marks such as DNA methylation. This would imply that TET1 should be a regulator of epigenetic marks during embryo development, although this has not been demonstrated. Previously, we have cloned porcine TET1 from blastocysts (GenBank accession number KC137683) and demonstrated that the level of TET1 (mRNA and protein) was high in blastocysts. The protein level was greater in the inner cell mass compared with the trophectoderm. In this study, we generated TET1 knockout porcine embryos using CRISPR/Cas9 system to study the role of TET1 in controlling epigenetic marks during porcine embryo development. First, 2 sgRNA, immediately downstream of the presumable translation initiation site, were designed and synthesised; location of the sgRNA were nucleotide position at 2 to 21 bp and 23 to 42 bp, respectively (KC137683). Then, sgRNA (10 ng μL−1 each) and Cas9 mRNA (20 ng μL−1) were injected into the cytoplasm of IVF zygotes, and Day 7 blastocysts were genotyped. All embryos carried mutations on both alleles of TET1 (10/10), one homozygous and 9 biallelic mutations. However, immunocytochemistry analysis of other CRISPR/Cas9 injected embryos revealed that TET1 was not removed (10/10), indicating that the sgRNA may have not introduced a premature stop codon 3′ to the presumable translation initiation site. Therefore, 2 new sgRNA were designed to generate a premature stop codon at the 5′ side of a key functional domain, the 2-oxoglutarate-Fe(II)-dependent oxygenase domain (4690 to 5160 bp); the locations of the 2 sgRNA were 4450 to 4469 bp and 4501 to 4520 bp, respectively. Similarly, all of the embryos carried mutations in TET1 (7/7), 2 homozygous and 5 biallelic mutations. In addition, TET1 proteins were not detected in 11 of 16 blastocysts, confirmed by immunocytochemistry. In this study, we successfully generated embryos lacking TET1 by introducing designed CRISPR/Cas9 system during embryogenesis. Presence of TET1 from the first injection experiment suggests that the presumable translation initiation site is not accurate. Discrepancy between genotyping and immunocytochemistry results from the second injection experiment indicates that embryos possessing TET1 protein probably have mutations in triplets, thus no premature stop codon was synthesised. Further studies will focus on identifying the role of TET1 in maintaining pluripotency and epigenetic modification during pre-implantation stage using these embryos.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 75-75 ◽  
Author(s):  
Jonathan J. Keats ◽  
Christopher A. Maxwell ◽  
Tony Reiman ◽  
Brian J. Taylor ◽  
Michael J. Mant ◽  
...  

Abstract Translocations involving the IgH locus are common genetic events in multiple myeloma (MM). A number of recurrent IgH translocations exist with t(11;14)(q13;q32) and t(4;14)(p16;q32) being the most common. These translocations predict for differential clinical outcomes, good versus poor, respectively. We have shown that ~70% of t(4;14) POS patients express the initially proposed target gene FGFR3. However, the t(4;14)POS/FGFR3NEG group of patients still fare poorly (P=0.01). Therefore, either the transformation event associated with t(4;14) is multifactorial or independent of FGFR3. The loss of FGFR3 expression is associated with the loss of der(14). However, der(4) is detectable in all t(4;14)POS patients at diagnosis and relapse, suggesting that it is biologically and clinically relevant. The der(4) chromosome is thought to result in the overexpression of MMSET. The genomic breakpoints associated with t(4;14) occur in the 5′ end of the MMSET locus. In 70% of patients (MB4-1), the breakpoints maintain the full length open reading frame of MMSET. In the remaining 30% (MB4-2 & MB4-3), the breakpoints occur downstream of the proper translation initiation site. Two principle transcripts originate from the MMSET gene. The first transcript initiates in the beginning of the MMSET locus and, as a result of alternative splicing of exon 12, produces either MMSET I or MMSET II. The second transcript initiates upstream of exon 10 and uses an alternative translation initiation site to produces RE-IIBP. MMSET I and II transcripts, produced by each breakpoint variant, and the RE-IIBP transcript, produced in all patients irrespective of breakpoint type, were cloned. Transcripts were C-terminally tagged with GFP and transiently transfected into HeLa cells. Anti-GFP immunoblots showed that all transcripts produced a protein product, even the MB4-2 and MB4-3 variants that utilize alternative translation initiation sites in exon 4 and 6, respectively. The wildtype/MB4-1 MMSET I and II constructs localized to the nucleus and were excluded from nucleoli. MMSET II is almost exclusively associated with chromatin while MMSET I localized diffusely. RE-IIBP localized primarily in cytoplasmic foci and to nucleoli. Unlike the full length MMSET proteins, the MB4-2/MB4-3 constructs localized to the nucleus but also localized in nucleoli. To determine if the N-terminus regulates the nuclear localization pattern, we cloned the N-terminal portion of MMSET, which is lost in the MB4-2 transcripts. As this construct localized to the nucleus and was excluded from nucleoli, therefore a domain required for the proper localization of MMSET is lost in the MB4-2/MB4-3 variants. Kinetic analysis of MMSET variants localized to the nucleoplasm shows that the association of MMSET II with chromatin is very stable, t1/2 130 sec, while the type II MB4-2 and MB4-3 breakpoint variants have reduced kinetics, t1/2 19 and 12 sec, respectively, suggesting a decreased stability of association. The reduction in kinetics is also seen in the type I variants. We verified the overexpression of RE-IIBP by quantitative RT-PCR on a panel of purified plasma cells and unpurified BMMC. RE-IIBP was overexpressed in t(4;14)POS patients, P=0.0009 and P=0.00006, respectively, making it the only overexpressed protein without altered function in all t(4;14)POS patients irrespective of FGFR3 expression or breakpoint type. Therefore, RE-IIBP may be of central importance to the poor outcome of t(4;14)POS MM patients.


Sign in / Sign up

Export Citation Format

Share Document