Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells

2001 ◽  
Vol 114 (6) ◽  
pp. 1125-1136 ◽  
Author(s):  
A. Somasiri ◽  
A. Howarth ◽  
D. Goswami ◽  
S. Dedhar ◽  
C.D. Roskelley

Signals generated by the interaction of (β)1 integrins with laminin in the basement membrane contribute to mammary epithelial cell morphogenesis and differentiation. The integrin-linked kinase (ILK) is one of the signaling moieties that associates with the cytoplasmic domain of (β)1 integrin subunits with some specificity. Forced expression of a dominant negative, kinase-dead form of ILK subtly altered mouse mammary epithelial cell morphogenesis but it did not prevent differentiative milk protein expression. In contrast, forced overexpression of wild-type ILK strongly inhibited both morphogenesis and differentiation. Overexpression of wild-type ILK also caused the cells to lose the cell-cell adhesion molecule E-cadherin, become invasive, reorganize cortical actin into cytoplasmic stress fibers, and switch from an epithelial cytokeratin to a mesenchymal vimentin intermediate filament phenotype. Forced expression of E-cadherin in the latter mesenchymal cells rescued epithelial cytokeratin expression and it partially restored the ability of the cells to differentiate and undergo morphogenesis. These data demonstrate that ILK, which responds to interactions between cells and the extracellular matrix, induces a mesenchymal transformation in mammary epithelial cells, at least in part, by disrupting cell-cell junctions.

1992 ◽  
Vol 12 (9) ◽  
pp. 3890-3902
Author(s):  
B Jehn ◽  
E Costello ◽  
A Marti ◽  
N Keon ◽  
R Deane ◽  
...  

Mammary epithelial cells terminally differentiate in response to lactogenic hormones. We present evidence that oncoprotein overexpression is incompatible with this hormone-inducible differentiation and results in striking cellular morphological changes. In mammary epithelial cells in culture, lactogenic hormones (glucocorticoid and prolactin) activated a transfected beta-casein promoter and endogenous beta-casein gene expression. This response to lactogenic hormone treatment was paralleled by a decrease in cellular AP-1 DNA-binding activity. Expression of the mos, ras, or src (but not myc) oncogene blocked the activation of the beta-casein promoter induced by the lactogenic hormones and was associated with the maintenance of high levels of AP-1. Mos expression also increased c-fos and c-jun mRNA levels. Overexpression of Fos and Jun from transiently transfected constructs resulted in a functional inhibition of the glucocorticoid receptor in these mouse mammary epithelial cells. This finding clearly suggests that glucocorticoid receptor inhibition arising from oncogene expression will contribute to the block in hormonally induced mammary epithelial cell differentiation. Expression of Src resulted in the loss of the normal organization and morphological phenotype of mammary epithelial cells in the epithelial/fibroblastic line IM-2. Activation of a conditional c-fos/estrogen receptor gene encoding an estrogen-dependent Fos/estrogen receptor fusion protein also morphologically transformed mammary epithelial cells and inhibited initiation of mammary epithelial differentiation-associated expression of the beta-casein and WDNM 1 genes. In response to estrogen treatment, the cells displayed a high level of AP-1 DNA-binding activity. Our results demonstrate that high cellular AP-1 levels contribute to blocking the ability of mammary epithelial cells in culture to respond to lactogenic hormones. This and other studies indicate that the oncogene products Mos, Ras, and Src exert their effects, at least in part, by stimulating cellular Fos and probably cellular Jun activity.


1992 ◽  
Vol 40 (10) ◽  
pp. 1501-1510 ◽  
Author(s):  
T Seddiki ◽  
S Delpal ◽  
M Ollivier-Bousquet

To study the transcytosis and segregation of ligand in the mammary epithelial cell, endocytosis and intracellular transit of human blood transferrin were followed in lactating rabbit mammary epithelial cells. Human transferrin labeled with biotin added to an incubation medium was bound to the basal membrane of mammary epithelial cells and carried across the cell to the lumen of the acini within 5-60 min. At the same time, biotinylated human transferrin accumulated at the apex of the cell. After incubation with human transferrin labeled with colloidal gold, label was detected inside endosome-like structures, vesicles and saccules of the Golgi apparatus, and inside the lumen within 2-5 min. A significant label accumulated at the apex of the cell after 30-60 min. Biotin labeling did not modify the time of transit of human transferrin, as attested by comparison with the time of transit of native transferrin. Human transferrin was never detected inside vesicles containing casein micelles. In contrast, rabbit milk transferrin was immunocytochemically detected inside vesicles containing casein micelles. These results indicate that transcytosis of human transferrin follows a pathway different from vesicles that carry casein micelles.


2005 ◽  
Vol 288 (5) ◽  
pp. C1042-C1047 ◽  
Author(s):  
Shannon L. Kelleher ◽  
Bo Lönnerdal

During lactation, a substantial amount of Zn2+ is transferred by the mammary gland from the maternal circulation into milk; thus secretory mammary epithelial cells must tightly regulate Zn2+ transport to ensure optimal Zn2+ transfer to the suckling neonate. To date, six Zn2+ import proteins (Zip1–6) have been identified; however, Zip3 expression is restricted to tissues with unique requirements for Zn2+, such as the mammary gland, which suggests that it may play a specialized role in this tissue. In the present study, we have used a unique mammary epithelial cell model (HC11) to characterize the role of Zip3 in mammary epithelial cell Zn2+ transport. Confocal microscopy demonstrated that Zip3 is localized to the cell surface in mammary epithelial cells and transiently relocalized to an intracellular compartment in cells with a secretory phenotype. Total 65Zn transport was higher in secreting cells, while gene silencing of Zip3 decreased 65Zn uptake into mammary epithelial cells, particularly in those with a secretory phenotype. Finally, reduced expression of Zip3 ultimately resulted in cell death, indicating that mammary epithelial cells have a unique requirement for Zip3-mediated Zn2+ import, which may reflect the unique requirement for Zn2+ of this highly specialized cell type and thus provides a physiological explanation for the restricted tissue distribution of this Zn2+ importer.


Endocrinology ◽  
2006 ◽  
Vol 147 (4) ◽  
pp. 1819-1829 ◽  
Author(s):  
Svetlana Mukhina ◽  
DongXu Liu ◽  
Ke Guo ◽  
Mireille Raccurt ◽  
Sahra Borges-Bendris ◽  
...  

We have examined the expression, postnatal ontogeny, and localization of mouse GH (mGH) and its relative expression during pregnancy, lactation, and weaning in the mouse. mGH mRNA and protein was expressed predominantly in the epithelial component of the mammary gland, and maximal expression was observed during the pubertal period. Autocrine mGH expression dramatically decreased during late pregnancy and lactation. Concordantly, autocrine mGH expression is repressed during forced differentiation of mouse HC11 mammary epithelial cells in culture. Forced expression of mGH in HC11 cells abrogated lactogenic differentiation as indicated by reduced expression of β-casein and reduced expression and loss of lateral epithelial localization of E-cadherin. Forced expression of mGH in mouse mammary epithelial cells increased cell survival and proliferation and consequently increased the size of mammary acinar-like structures formed in three-dimensional Matrigel. Thus, autocrine mGH expression in the mouse mammary epithelial cell is maximal at puberty and prevents mammary epithelial cell differentiation. Autocrine GH will therefore participate in mammary morphogenic processes at puberty.


1992 ◽  
Vol 12 (9) ◽  
pp. 3890-3902 ◽  
Author(s):  
B Jehn ◽  
E Costello ◽  
A Marti ◽  
N Keon ◽  
R Deane ◽  
...  

Mammary epithelial cells terminally differentiate in response to lactogenic hormones. We present evidence that oncoprotein overexpression is incompatible with this hormone-inducible differentiation and results in striking cellular morphological changes. In mammary epithelial cells in culture, lactogenic hormones (glucocorticoid and prolactin) activated a transfected beta-casein promoter and endogenous beta-casein gene expression. This response to lactogenic hormone treatment was paralleled by a decrease in cellular AP-1 DNA-binding activity. Expression of the mos, ras, or src (but not myc) oncogene blocked the activation of the beta-casein promoter induced by the lactogenic hormones and was associated with the maintenance of high levels of AP-1. Mos expression also increased c-fos and c-jun mRNA levels. Overexpression of Fos and Jun from transiently transfected constructs resulted in a functional inhibition of the glucocorticoid receptor in these mouse mammary epithelial cells. This finding clearly suggests that glucocorticoid receptor inhibition arising from oncogene expression will contribute to the block in hormonally induced mammary epithelial cell differentiation. Expression of Src resulted in the loss of the normal organization and morphological phenotype of mammary epithelial cells in the epithelial/fibroblastic line IM-2. Activation of a conditional c-fos/estrogen receptor gene encoding an estrogen-dependent Fos/estrogen receptor fusion protein also morphologically transformed mammary epithelial cells and inhibited initiation of mammary epithelial differentiation-associated expression of the beta-casein and WDNM 1 genes. In response to estrogen treatment, the cells displayed a high level of AP-1 DNA-binding activity. Our results demonstrate that high cellular AP-1 levels contribute to blocking the ability of mammary epithelial cells in culture to respond to lactogenic hormones. This and other studies indicate that the oncogene products Mos, Ras, and Src exert their effects, at least in part, by stimulating cellular Fos and probably cellular Jun activity.


2011 ◽  
Vol 343-344 ◽  
pp. 649-654
Author(s):  
Chun Long Liu ◽  
Zhong Qiu Li ◽  
Xing Jun Feng

Effects of Daidzein or Genistein on the proliferation and antioxidation of mammary epithelial cells of dairy cow were investigated in vitro. 10 groups were assigned including blank control, estradiol (E2) group(10 ng/mL), different concentrations of Daidzein (1, 10, 100, 1 000 ng/mL) and Genistein (1, 10, 100, 1 000 ng/mL) groups. The MMT method was used to determine the proliferation effect of Genistein or Daidzein, and the results showed that Genistein at the concentration of 10 and 100 ng/mL, and Daidzein at the concentration of 100 and 1000 ng/mL significantly improved dairy cow mammary epithelial cell proliferation (P<0.05) , while significantly weaker than E2 group(P<0.05). In the antioxidation experiment, the T-SOD and GSH-PX activity, MDA and NO content of the mammary epithelial cells at the logarithmic growth phase treated with Daidzein or Genistein for 24 h were measured and the results showed that 100, 1000 ng/mL Daidzein, and 100, 1000 ng/ mL Genistein significantly increased the T-SOD activities and decreased MDA content (P<0.05).1 000 ng/ mL Daidzein and 100, 1 000 ng/mL Genistein significantly increased the GSH-PX activites (P<0.05). The results showed that proper levels of daidzein and genistein can improv the proliferation and antioxidation function of mammary epithelial cell of dairy cows.


2008 ◽  
Vol 22 (12) ◽  
pp. 2677-2688 ◽  
Author(s):  
Paul G. Tiffen ◽  
Nader Omidvar ◽  
Nuria Marquez-Almuina ◽  
Dawn Croston ◽  
Christine J. Watson ◽  
...  

Abstract Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes β-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed β-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3194
Author(s):  
Yutaka Suzuki ◽  
Sachi Chiba ◽  
Koki Nishihara ◽  
Keiichi Nakajima ◽  
Akihiko Hagino ◽  
...  

Epithelial barrier function in the mammary gland acts as a forefront of the defense mechanism against mastitis, which is widespread and a major disorder in dairy production. Chemerin is a chemoattractant protein with potent antimicrobial ability, but its role in the mammary gland remains unelucidated. The aim of this study was to determine the function of chemerin in mammary epithelial tissue of dairy cows in lactation or dry-off periods. Mammary epithelial cells produced chemerin protein, and secreted chemerin was detected in milk samples. Chemerin treatment promoted the proliferation of cultured bovine mammary epithelial cells and protected the integrity of the epithelial cell layer from hydrogen peroxide (H2O2)-induced damage. Meanwhile, chemerin levels were higher in mammary tissue with mastitis. Tumor necrosis factor alpha (TNF-α) strongly upregulated the expression of the chemerin-coding gene (RARRES2) in mammary epithelial cells. Therefore, chemerin was suggested to support mammary epithelial cell growth and epithelial barrier function and to be regulated by inflammatory stimuli. Our results may indicate chemerin as a novel therapeutic target for diseases in the bovine mammary gland.


1997 ◽  
Vol 110 (1) ◽  
pp. 55-63 ◽  
Author(s):  
S. Stahl ◽  
S. Weitzman ◽  
J.C. Jones

In vivo, normal mammary epithelial cells utilize hemidesmosome attachment devices to adhere to stroma. However, analyses of a potential role for hemidesmosomes and their components in mammary epithelial tissue morphogenesis have never been attempted. MCF-10A cells are a spontaneously immortalized line derived from mammary epithelium and possess a number of characteristics of normal mammary epithelial cells including expression of hemidesmosomal associated proteins such as the two bullous pemphigoid antigens, alpha 6 beta 4 integrin and its ligand laminin-5. More importantly, MCF-10A cells readily assemble mature hemidesmosomes when plated onto uncoated substrates. When maintained on matrigel, like their normal breast epithelial cell counterparts, MCF-10A cells undergo a branching morphogenesis and assemble hemidesmosomes at sites of cell-matrigel interaction. Function blocking antibodies specific for human laminin-5 and the alpha subunits of its two known receptors (alpha 3 beta 1 and alpha 6 beta 4 integrin) not only inhibit hemidesmosome assembly by MCF-10A cells but also impede branching morphogenesis induced by matrigel. Our results imply that the hemidesmosome, in particular those subunits comprising its laminin-5/integrin ‘backbone’, play an important role in morphogenetic events. We discuss these results in light of recent evidence that hemidesmosomes are sites involved in signal transduction.


Sign in / Sign up

Export Citation Format

Share Document