Sequential activation of individual PKC isozymes in integrin-mediated muscle cell spreading: a role for MARCKS in an integrin signaling pathway

2002 ◽  
Vol 115 (10) ◽  
pp. 2151-2163 ◽  
Author(s):  
Marie-Hélène Disatnik ◽  
Stéphane C. Boutet ◽  
Christine H. Lee ◽  
Daria Mochly-Rosen ◽  
Thomas A. Rando

To understand how muscle cell spreading and survival are mediated by integrins, we studied the signaling events initiated by the attachment of muscle cells to fibronectin (FN). We have previously demonstrated that muscle cell spreading on FN is mediated by α5β1 integrin, is associated with rapid phosphorylation of focal adhesion kinase and is dependent on activation of protein kinase C (PKC). Here we investigated the role of individual PKC isozymes in these cellular processes. We show that α,δ and ϵPKC are expressed in muscle cells and are activated upon integrin engagement with different kinetics — ϵPKC was activated early, whereas α and δPKC were activated later. Using isozyme-specific inhibitors, we found that the activation of ϵPKC was necessary for cell attachment to FN. However, using isozyme-specific activators, we found that activation of each of three isozymes was sufficient to promote the spreading of α5-integrin-deficient cells on FN. To investigate further the mechanism by which integrin signaling and PKC activation mediate cell spreading, we studied the effects of these processes on MARCKS, a substrate of PKC and a protein known to regulate actin dynamics. We found that MARCKS was localized to focal adhesion sites soon after cell adhesion and that MARCKS translocated from the membrane to the cytosol during the process of cell spreading. This translocation correlated with different phases of PKC activation and with reorganization of the actin cytoskeleton. Using MARCKS-antisense cDNA, we show that α5-expressing cells in which MARCKS expression is inhibited fail to spread on FN, providing evidence for the crucial role of MARCKS in muscle cell spreading. Together, the data suggest a model in which early activation of ϵPKC is necessary for cell attachment; the later activation of α or δPKC may be necessary for the progression from attachment to spreading. The mechanism of PKC-mediated cell spreading may be via the phosphorylation of signaling proteins, such as MARCKS, that are involved in the reorganization of the actin cytoskeleton.

2000 ◽  
Vol 279 (1) ◽  
pp. G201-G210 ◽  
Author(s):  
K. S. Murthy ◽  
J. R. Grider ◽  
J. F. Kuemmerle ◽  
G. M. Makhlouf

The role of protein kinase C (PKC) in sustained contraction was examined in intestinal circular and longitudinal muscle cells. Initial contraction induced by agonists (CCK-8 and neuromedin C) was abolished by 1) inhibitors of Ca2+ mobilization (neomycin and dimethyleicosadienoic acid), 2) calmidazolium, and 3) myosin light chain (MLC) kinase (MLCK) inhibitor KT-5926. In contrast, sustained contraction was not affected by these inhibitors but was abolished by 1) the PKC inhibitors chelerythrine and calphostin C, 2) PKC-ε antibody, and 3) a pseudosubstrate PKC-ε inhibitor. GDPβS abolished both initial and sustained contraction, whereas a Gαq/11 antibody inhibited only initial contraction, implying that sustained contraction was dependent on activation of a distinct G protein. Sustained contraction induced by epidermal growth factor was inhibited by calphostin C, PKC-α,β,γ antibody, and a pseudosubstrate PKC-α inhibitor. Ca2+ (0.4 μM) induced an initial contraction in permeabilized muscle cells that was blocked by calmodulin and MLCK inhibitors and a sustained contraction that was blocked by calphostin C and a PKC-α,β,γ antibody. Thus initial contraction induced by Ca2+, agonists, and growth factors is mediated by MLCK, whereas sustained contraction is mediated by specific Ca2+-dependent and -independent PKC isozymes. G protein-coupled receptors are linked to PKC activation via distinct G proteins.


1993 ◽  
Vol 4 (3) ◽  
pp. 271-281 ◽  
Author(s):  
J S Chun ◽  
B S Jacobson

Release of arachidonic acid (AA) and subsequent formation of a lipoxygenase (LOX) metabolite(s) is an obligatory signal to induce spreading of HeLa cells on a gelatin substratum (Chun and Jacobson, 1992). This study characterizes signaling pathways that follow the LOX metabolite(s) formation. Levels of diacylglycerol (DG) increase upon attachment and before cell spreading on a gelatin substratum. DG production and cell spreading are insignificant when phospholipase A2 (PLA2) or LOX is blocked. In contrast, when cells in suspension where PLA2 activity is not stimulated are treated with exogenous AA, DG production is turned on, and inhibition of LOX turns it off. This indicates that the formation of a LOX metabolite(s) from AA released during cell attachment induces the production of DG. Consistent with the DG production is the activation of protein kinase C (PKC) which, as with AA and DG, occurs upon attachment and before cell spreading. Inhibition of AA release and subsequent DG production blocks both PKC activation and cell spreading. Cell spreading is also blocked by the inhibition of PKC with calphostin C or sphingosine. The inhibition of cell spreading induced by blocking AA release is reversed by the direct activation of PKC with phorbol ester. However, the inhibition of cell spreading induced by PKC inhibition is not reversed by exogenously applied AA. In addition, inhibition of PKC does not block AA release and DG production. The data indicate that there is a sequence of events triggered by HeLa cell attachment to a gelatin substratum that leads to the initiation of cell spreading: AA release, a LOX metabolite(s) formation, DG production, and PKC activation. The data also provide evidence indicating that HeLa cell spreading is a cyclic feedback amplification process centered on the production of AA, which is the first messenger produced in the sequence of messengers initiating cell spreading. Both DG and PKC activity that are increased during HeLa cell attachment to a gelatin substratum appear to be involved. DG not only activates PKC, which is essential for cell spreading, but is also hydrolyzed to AA. PKC, which is initially activated as consequence of AA production, also increases more AA production by activating PLA2.


1999 ◽  
Vol 277 (1) ◽  
pp. H192-H198 ◽  
Author(s):  
Aviv Hassid ◽  
Shile Huang ◽  
Jian Yao

Recent studies have focused attention on the role of protein tyrosine kinases in vascular smooth muscle cell biology, but similar information regarding protein tyrosine phosphatases (PTP) is sparse. PTP-1B is a ubiquitous nonreceptor phosphatase with uncertain function and substrates that are mostly unidentified. We used antisense oligodeoxynucleotides (ODN) against PTP-1B to investigate the role of endogenous PTP-1B in motility of primary cultures of rat aortic smooth muscle cells (RASMC). Antisense ODN decreased PTP-1B protein levels and activity in a concentration-dependent fashion, whereas sense, scrambled, or three-base mismatch antisense ODN had little or no effect. Treatment of cells with antisense ODN, but not sense, scrambled, or three-base mismatch antisense ODN, enhanced cell motility and increased tyrosine phosphorylation levels of focal adhesion proteins paxillin, p130cas, and focal adhesion kinase. Our findings indicate that PTP-1B is a negative regulator of RASMC motility via modulation of phosphotyrosine levels in several focal adhesion proteins and suggest the involvement of PTP-1B in events such as atherosclerosis and restenosis, which are associated with increased vascular smooth muscle cell motility.


2002 ◽  
Vol 283 (2) ◽  
pp. C489-C499 ◽  
Author(s):  
Tam Luan Le ◽  
Shannon R. Joseph ◽  
Alpha S. Yap ◽  
Jennifer L. Stow

E-cadherin is a major component of adherens junctions in epithelial cells. We showed previously that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. In the present study, we investigated the potential role of protein kinase C (PKC) in regulating the trafficking of surface E-cadherin in Madin-Darby canine kidney cells. Using surface biotinylation and immunofluorescence, we found that treatment of cells with phorbol esters increased the rate of endocytosis of E-cadherin, resulting in accumulation of E-cadherin in apically localized early or recycling endosomes. The recycling of E-cadherin back to the surface was also decreased in the presence of phorbol esters. Phorbol ester-induced endocytosis of E-cadherin was blocked by specific inhibitors, implicating novel PKC isozymes, such as PKC-ε in this pathway. PKC activation led to changes in the actin cytoskeleton facilitating E-cadherin endocytosis. Depolymerization of actin increased endocytosis of E-cadherin, whereas the PKC-induced uptake of E-cadherin was blocked by the actin stabilizer jasplakinolide. Our findings show that PKC regulates vital steps of E-cadherin trafficking, its endocytosis, and its recycling.


2008 ◽  
Vol 295 (4) ◽  
pp. H1547-H1555 ◽  
Author(s):  
Utako Yokoyama ◽  
Susumu Minamisawa ◽  
Hong Quan ◽  
Toru Akaike ◽  
Meihua Jin ◽  
...  

Vascular remodeling after mechanoinjury largely depends on the migration of smooth muscle cells, an initial key step to wound healing. However, the role of the second messenger system, in particular, the cAMP signal, in regulating such remodeling remains controversial. Exchange protein activated by cAMP (Epac) has been identified as a new target molecule of the cAMP signal, which is independent from PKA. We thus examined whether Epac plays a distinct role from PKA in vascular remodeling. To examine the role of Epac and PKA in migration, we used primary culture smooth muscle cells from both the fetal and adult rat aorta. A cAMP analog selective to PKA, 8-(4-parachlorophenylthio)-cAMP (pCPT-cAMP), decreased cell migration, whereas an Epac-selective analog, 8-pCPT-2′- O-Me-cAMP, enhanced migration. Adenovirus-mediated gene transfer of PKA decreased cell migration, whereas that of Epac1 significantly enhanced cell migration. Striking morphological differences were observed between pCPT-cAMP- and 8-pCPT-2′- O-Me-cAMP-treated aortic smooth muscle cells. Furthermore, overexpression of Epac1 enhanced the development of neointimal formation in fetal rat aortic tissues in organ culture. When the mouse femoral artery was injured mechanically in vivo, we found that the expression of Epac1 was upregulated in vascular smooth muscle cells, whereas that of PKA was downregulated with the progress of neointimal thickening. Our findings suggest that Epac1, in opposition to PKA, increases vascular smooth muscle cell migration. Epac may thus play an important role in advancing vascular remodeling and restenosis upon vascular injury.


2008 ◽  
Vol 389 (1) ◽  
pp. 47-55 ◽  
Author(s):  
Matthew A. Sanders ◽  
Marc D. Basson

Abstract We previously observed that collagen IV regulates Caco-2 intestinal epithelial cell spreading and migration via Src-dependent p130Cas phosphorylation and stimulates focal adhesion kinase (FAK). However, the role of FAK and the related kinase, Pyk2, in Caco-2 spreading and migration is unclear. FAK- or Pyk2-specific siRNAs reduced protein levels by 90%. However, when detached cells were replated on collagen IV neither individual nor combined FAK and Pyk2 siRNAs affected the cell spreading rate. As combined FAK and Pyk2 siRNAs increased p130Cas protein levels, we cotransfected cells with 1 nm p130Cas siRNA to partially reduce p130Cas protein to control levels. Although p130Cas Tyr(P)249 phosphorylation was reduced by 60%, cell spreading was unaffected. Combined siRNA reduction of FAK, Pyk2 and p130Cas increased cell spreading by 20% compared to p130Cas siRNA alone, suggesting that FAK and Pyk2 negatively regulate spreading in addition to stimulating spreading via p130Cas. FAK-binding mutant SH3 domain-deleted rat p130Cas was not phosphorylated after adhesion and, unlike full-length p130Cas, did not restore spreading after human-specific p130Cas siRNA knockdown of endogenous p130Cas. Together, these data suggest that FAK positively regulates Caco-2 spreading on collagen IV via p130Cas phosphorylation, but also suggests that FAK may negatively regulate spreading through other mechanisms and the presence of additional FAK-independent pathways regulating p130Cas.


2001 ◽  
Vol 154 (1) ◽  
pp. 161-176 ◽  
Author(s):  
Kip A. West ◽  
Huaye Zhang ◽  
Michael C. Brown ◽  
Sotiris N. Nikolopoulos ◽  
M.C. Riedy ◽  
...  

The small GTPases of the Rho family are intimately involved in integrin-mediated changes in the actin cytoskeleton that accompany cell spreading and motility. The exact means by which the Rho family members elicit these changes is unclear. Here, we demonstrate that the interaction of paxillin via its LD4 motif with the putative ARF-GAP paxillin kinase linker (PKL) (Turner et al., 1999), is critically involved in the regulation of Rac-dependent changes in the actin cytoskeleton that accompany cell spreading and motility. Overexpression of a paxillin LD4 deletion mutant (paxillinΔLD4) in CHO.K1 fibroblasts caused the generation of multiple broad lamellipodia. These morphological changes were accompanied by an increase in cell protrusiveness and random motility, which correlated with prolonged activation of Rac. In contrast, directional motility was inhibited. These alterations in morphology and motility were dependent on a paxillin–PKL interaction. In cells overexpressing paxillinΔLD4 mutants, PKL localization to focal contacts was disrupted, whereas that of focal adhesion kinase (FAK) and vinculin was not. In addition, FAK activity during spreading was not compromised by deletion of the paxillin LD4 motif. Furthermore, overexpression of PKL mutants lacking the paxillin-binding site (PKLΔPBS2) induced phenotypic changes reminiscent of paxillinΔLD4 mutant cells. These data suggest that the paxillin association with PKL is essential for normal integrin-mediated cell spreading, and locomotion and that this interaction is necessary for the regulation of Rac activity during these events.


2014 ◽  
Vol 5 ◽  
Author(s):  
Csaderova Lucia ◽  
Debreova Michaela ◽  
Radvak Peter ◽  
Vrestiakova Magdalena ◽  
Stano Matej ◽  
...  

1997 ◽  
Vol 6 (3) ◽  
pp. 237-240
Author(s):  
W. E. Longo ◽  
G. S. Smith ◽  
Y. Deshpande ◽  
C. Reickenberg ◽  
D. L. Kaminski

The contribution of smooth muscle cells as a potential source of eicosanoid production during inflammatory states remains to be elucidated. We investigated the effect of trinitrobenzene sulfonic acid (TNB), a known pro-inflammatory agent, on jejunal smooth muscle cell eicosanoid production. Human gut-derived smooth muscle cells (HISM) were incubated with TNB for 1 hour. Additionally, some cells were preincubated with either dimethylthiourea, or indomethacin for 1 hour before exposure to identical concentrations of TNB. Incubation with TNB led to significant increases in PGE2and 6-keto PGF-1αrelease, but not leukotriene B4release; responses which were both inhibited by dimethylthiourea and indomethacin treatment. Our results suggest that gutderived smooth muscle cells may represent an important source of proinflammatory prostanoids but not leukotrienes during inflammatory states of the intestine. The inhibition of prostanoid activity by thiourea may be mediated by suppression of cyclooxygenase activity in this cell line.


Sign in / Sign up

Export Citation Format

Share Document