Sustained muscle contraction induced by agonists, growth factors, and Ca2+ mediated by distinct PKC isozymes

2000 ◽  
Vol 279 (1) ◽  
pp. G201-G210 ◽  
Author(s):  
K. S. Murthy ◽  
J. R. Grider ◽  
J. F. Kuemmerle ◽  
G. M. Makhlouf

The role of protein kinase C (PKC) in sustained contraction was examined in intestinal circular and longitudinal muscle cells. Initial contraction induced by agonists (CCK-8 and neuromedin C) was abolished by 1) inhibitors of Ca2+ mobilization (neomycin and dimethyleicosadienoic acid), 2) calmidazolium, and 3) myosin light chain (MLC) kinase (MLCK) inhibitor KT-5926. In contrast, sustained contraction was not affected by these inhibitors but was abolished by 1) the PKC inhibitors chelerythrine and calphostin C, 2) PKC-ε antibody, and 3) a pseudosubstrate PKC-ε inhibitor. GDPβS abolished both initial and sustained contraction, whereas a Gαq/11 antibody inhibited only initial contraction, implying that sustained contraction was dependent on activation of a distinct G protein. Sustained contraction induced by epidermal growth factor was inhibited by calphostin C, PKC-α,β,γ antibody, and a pseudosubstrate PKC-α inhibitor. Ca2+ (0.4 μM) induced an initial contraction in permeabilized muscle cells that was blocked by calmodulin and MLCK inhibitors and a sustained contraction that was blocked by calphostin C and a PKC-α,β,γ antibody. Thus initial contraction induced by Ca2+, agonists, and growth factors is mediated by MLCK, whereas sustained contraction is mediated by specific Ca2+-dependent and -independent PKC isozymes. G protein-coupled receptors are linked to PKC activation via distinct G proteins.

2002 ◽  
Vol 16 (12) ◽  
pp. 2840-2852 ◽  
Author(s):  
Cheryl A. Pickett ◽  
Nicole Manning ◽  
Yoshiko Akita ◽  
Arthur Gutierrez-Hartmann

Abstract Epidermal growth factor (EGF) and TRH both produce enhanced prolactin (PRL) gene transcription and PRL secretion in GH4 rat pituitary tumor cell lines. These agents also activate protein kinase C (PKC) in these cells. Previous studies have implicated the PKCε isozyme in mediating TRH-induced PRL secretion. However, indirect studies using phorbol ester down-regulation to investigate the role of PKC in EGF- and TRH-induced PRL gene transcription have been inconclusive. In the present study, we examined the role of multiple PKC isozymes on EGF- and TRH-induced activation of the PRL promoter by utilizing general and selective PKC inhibitors and by expression of genes for wild-type and kinase-negative forms of the PKC isozymes. Multiple nonselective PKC inhibitors, including staurosporine, bisindolylmaleimide I, and Calphostin C, inhibited both EGF and TRH induced rat PRL promoter activity. TRH effects were more sensitive to Calphostin C, a competitive inhibitor of diacylglycerol, whereas Go 6976, a selective inhibitor of Ca2+-dependent PKCs, produced a modest inhibition of EGF but no inhibition of TRH effects. Rottlerin, a specific inhibitor of the novel nPKCδ isozyme, significantly blocked both EGF and TRH effects. Overexpression of genes encoding PKCs α, βΙ, βΙΙ, δ, γ, and λ failed to enhance either EGF or TRH responses, whereas overexpression of nPKCη enhanced the EGF response. Neither stable nor transient overexpression of nPKCε produced enhancement of EGF- or TRH-induced PRL promoter activity, suggesting that different processes regulate PRL transcription and hormone secretion. Expression of a kinase inactive nPKCδ construct produced modest inhibition of EGF-mediated rPRL promoter activity. Taken together, these data provide evidence for a role of multiple PKC isozymes in mediating both EGF and TRH stimulated PRL gene transcription. Both EGF and TRH responses appear to require the novel isozyme, nPKCδ, whereas nPKCη may also be able to transmit the EGF response. Inhibitor data suggest that the EGF response may also involve Ca2+-dependent isozymes, whereas the TRH response appears to be more dependent on diacylglycerol.


2002 ◽  
Vol 115 (10) ◽  
pp. 2151-2163 ◽  
Author(s):  
Marie-Hélène Disatnik ◽  
Stéphane C. Boutet ◽  
Christine H. Lee ◽  
Daria Mochly-Rosen ◽  
Thomas A. Rando

To understand how muscle cell spreading and survival are mediated by integrins, we studied the signaling events initiated by the attachment of muscle cells to fibronectin (FN). We have previously demonstrated that muscle cell spreading on FN is mediated by α5β1 integrin, is associated with rapid phosphorylation of focal adhesion kinase and is dependent on activation of protein kinase C (PKC). Here we investigated the role of individual PKC isozymes in these cellular processes. We show that α,δ and ϵPKC are expressed in muscle cells and are activated upon integrin engagement with different kinetics — ϵPKC was activated early, whereas α and δPKC were activated later. Using isozyme-specific inhibitors, we found that the activation of ϵPKC was necessary for cell attachment to FN. However, using isozyme-specific activators, we found that activation of each of three isozymes was sufficient to promote the spreading of α5-integrin-deficient cells on FN. To investigate further the mechanism by which integrin signaling and PKC activation mediate cell spreading, we studied the effects of these processes on MARCKS, a substrate of PKC and a protein known to regulate actin dynamics. We found that MARCKS was localized to focal adhesion sites soon after cell adhesion and that MARCKS translocated from the membrane to the cytosol during the process of cell spreading. This translocation correlated with different phases of PKC activation and with reorganization of the actin cytoskeleton. Using MARCKS-antisense cDNA, we show that α5-expressing cells in which MARCKS expression is inhibited fail to spread on FN, providing evidence for the crucial role of MARCKS in muscle cell spreading. Together, the data suggest a model in which early activation of ϵPKC is necessary for cell attachment; the later activation of α or δPKC may be necessary for the progression from attachment to spreading. The mechanism of PKC-mediated cell spreading may be via the phosphorylation of signaling proteins, such as MARCKS, that are involved in the reorganization of the actin cytoskeleton.


2002 ◽  
Vol 34 (10) ◽  
pp. 1399-1409 ◽  
Author(s):  
Karsten Peppel ◽  
Lisheng Zhang ◽  
Tam T.T. Huynh ◽  
Xuewei Huang ◽  
Anne Jacobson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document