Feeding in Ciliated Protozoa

1974 ◽  
Vol 15 (2) ◽  
pp. 379-401
Author(s):  
JOHN. A. KLOETZEL

The ciliate Euplotes is able to expend a very large amount of membrane in the formation of food vacuoles. Calculations based on the rate of ingestion of the food organism Tetrahymena indicate that an amount of food vacuole membrane equivalent to approximately 50-150% of the total Euplotes cell surface area can be produced within 5-10 min. An aggregation of osmiophilic, membrane-limited ‘pharyngeal disks’ is found packed in the cytoplasm just beneath the cell surface membrane in the region of the cell mouth and cytopharynx. These disks, which can be seen also in living cells, have average dimensions of 2 µm diameter by 100 nm thickness, and contain tightly packed layers of a thin lamellar material. Electron micrographs have revealed the apparent fusion of the limiting membrane of disks with the cell's plasma membrane at the base of the gullet. The lamellar disk contents are thereby released to the exterior medium in the buccal cavity, where they form a loosely packed layer over the surface membrane. It is postulated that the pharyngeal disks represent a repository of preformed membrane for use in food vacuole formation. The disk contents may also play a role in food ingestion, although this is not well defined at present. The myeloid content of old food vacuoles is very similar to that of nearby disks in the cytoplasm, suggesting that the disks may form by pinching from shrinking food vacuoles during the digestive cycle. Thus a cycle of membrane flow is envisaged, with the pharyngeal disks (1) coalescing with the surface membrane during food vacuole formation, (2) reforming by pinching from these food vacuoles during digestion, and (3) migrating back to the oral region to serve as a membrane store for subsequent food vacuole formation.

1931 ◽  
Vol 8 (1) ◽  
pp. 17-29
Author(s):  
SYLVIA M. MILLS

1. The effect exerted by the pH of their medium on Colpidium is determined quantitatively by counting the average number of food vacuoles formed in a given time when Colpidium is supplied with Indian ink. 2. Graphs obtained by plotting the rate of feeding against the pH of the medium show a characteristic depression on the alkaline side of neutrality (pH 7.5-8.5), on a curve which otherwise rises steadily from pH 4.5 to a maximum at pH 6.0, and falls from here gradually through the alkaline range. 3. Methods for measuring the rate of movement of ciliates are described, the most practicable being those in which their galvanotropic and geotropic reactions are used to control the direction of the movement. The effect of changes in the pH of the medium on the rate of movement of Colpidium was found to correspond very closely to the effect of similar pHs on the rate of food ingestion. It is, therefore, suggested that changes in the rate of ciliary movement are largely responsible for changes in the rates of food ingestion. 4. Mucus, produced for food collection, and probably also present in the fluid in which the cilia are working, is shown to have a maximum viscosity at pH 8.0. It is suggested that the depression in the region of pH 8.0, seen in curves representing changes in the rates of feeding and movement with pH, indicate that the viscosity of the fluid in which the cilia are beating is one of the limiting factors in the rate of food ingestion through the range of pH occupied by the depression.


1979 ◽  
Vol 35 (1) ◽  
pp. 217-227
Author(s):  
R.D. Allen ◽  
R.W. Wolf

Exocytosis and membrane recycling at the cytoproct (cell anus) of Tetrahymena pyriformis were studied using thin-section electron microscopy. Single cells were fixed at specific times relative to the elimination of the vacuole's contents—before elimination, at elimination, 3–5 s and 10–15 s following elimination. The closed cytoproct is distinguished from other pellicular regions by a single membrane at the cell surface which is circumscribed by an electron-opaque flange that links or welds the plasma membrane to the underlying alveolar margins. Microtubules originating in the flange pass inward where they lie over, and possibly guide, the approaching food vacuoles to the cytoproct. Food facuoles near the cytoproct are also accompanied by coats of microfilaments. These microfilaments appear to be active in the channelling and endocytosis of food vacuole membrane. Upon cytoproct opening the plasma membrane and food vacuole membrane fuse. Elimination seems to be essentially passive and is accomplished by re-engulfment of the old food vacuole membrane which is constantly associated with microfilaments. Reengulfment of all the food vacuole membrane requires 10–15 s and results in a closed cytoproct. The membrane remnants embedded in microfilaments form a cluster under the closed cytoproct. At the periphery of this cluster remnants take the shape of 70–130-nm spherical vesicles or 0.2-micrometer-long flattened vesicles.


1976 ◽  
Vol 71 (2) ◽  
pp. 575-588 ◽  
Author(s):  
J Smith-Sonneborn ◽  
S R Rodermel

Aged cells have significantly fewer food vacuoles and ingest fewer bacteria than young cells. Loss of food vacuoles was explained by a decreasing difference in the food vacuole formation and excretion rates; the formation rate declined more rapidly than the excretion rate, approaching equivalence at 160 fissions, when the proportion of cells with no food vacuoles, in the presence of excess food, abruptly increased. A model for cellular aging is presented in which control of organelle numbers and cyclical interactions between the nucleus and cytoplasm may be of critical importance.


1986 ◽  
Vol 34 (4) ◽  
pp. 443-454 ◽  
Author(s):  
H Kersken ◽  
J Vilmart-Seuwen ◽  
M Momayezi ◽  
H Plattner

In living Paramecium cells, microinjected rhodaminyl (R)-phalloidin rapidly labels a thin cortical layer. This can be more clearly resolved with microinjected and fixed cells (allowing for better resolution) as well as with isolated pellicles (surface membrane complexes with trichocysts, microfilaments, and mitochondria attached). Labeling of a longitudinal and perpendicular pattern, reflecting the relief of the cell surface, and labeling of ciliary basal bodies then becomes clearly visible. Other structures labeled by R-phalloidin are the surfaces of food vacuoles of different sizes and, although inconsistently, the borders of the buccal cavity. Small acidic compartments (as identified by acridine orange fluorescence vital staining), probably representing acidosomes and small lysosomes, were not labeled. F-actin on food vacuole surfaces may somehow be involved in intracellular transport or fusion processes. No labeling was observed in association with the osmoregulatory system (contractile vacuoles and their ampullae and radial canals). The specificity of in vivo labeling obtained was supported by the abolition of R-phalloidin labeling when isolated pellicles were pretreated with unlabeled phalloidin or with DNAse I. It was also possible to discriminate among different layers of R-phalloidin binding in the cortex by detaching different layers of the surface complex from each other. Since localization of F-actin in ciliates has raised a considerable amount of dispute in the past, we also repeated all these experiments with RITC-labeled HMM, but we obtained essentially the same labeling pattern as with R-phalloidin. Ciliary basal bodies therefore clearly contain some F-actin. Our data shed some light on aspects of surface structuring and motility in these cells.


1974 ◽  
Vol 63 (3) ◽  
pp. 904-922 ◽  
Author(s):  
Richard D. Allen

Evidence from a morphological study of the oral apparatus of Paramecium caudatum using electron microscope techniques have shown the existence of an elaborate structural system which is apparently designed to recycle digestive-vacuole membrane. Disk-shaped vesicles are filtered out of the cytoplasm by a group of microtubular ribbons. The vesicles, after being transported to the cytostome-cytopharynx region in association with these ribbons, accumulate next to the cytopharynx before they become fused with the cytopharyngeal membrane. This fusion allows the nascent food vacuole to grow and increase its membrane surface area. The morphology of this cytostome-cytopharynx region is described in detail and illustrated with a three-dimensional drawing of a portion of this region and a clay sculpture of the oral apparatus of Paramecium. Evidence from the literature for the transformation of food vacuole membrane into disk-shaped vesicles both from condensing food vacuoles in the endoplasm and from egested food vacuoles at the cytoproct is presented. This transformation would complete a system of digestive vacuole membrane recycling.


2013 ◽  
Vol 12 (8) ◽  
pp. 1080-1086 ◽  
Author(s):  
Nanami Shiozaki ◽  
Kentaro Nakano ◽  
Yasuharu Kushida ◽  
Taro Q. P. Noguchi ◽  
Taro Q. P. Uyeda ◽  
...  

ABSTRACT ADF/cofilin is a highly conserved actin-modulating protein. Reorganization of the actin cytoskeleton in vivo through severing and depolymerizing of F-actin by this protein is essential for various cellular events, such as endocytosis, phagocytosis, cytokinesis, and cell migration. We show that in the ciliate Tetrahymena thermophila , the ADF/cofilin homologue Adf73p associates with actin on nascent food vacuoles. Overexpression of Adf73p disrupted the proper localization of actin and inhibited the formation of food vacuoles. In vitro , recombinant Adf73p promoted the depolymerization of filaments made of T. thermophila actin (Act1p). Knockout cells lacking the ADF73 gene are viable but grow extremely slowly and have a severely decreased rate of food vacuole formation. Knockout cells have abnormal aggregates of actin in the cytoplasm. Surprisingly, unlike the case in animals and yeasts, in Tetrahymena , ADF/cofilin is not required for cytokinesis. Thus, the Tetrahymena model shows promise for future studies of the role of ADF/cofilin in vivo .


1976 ◽  
Vol 68 (3) ◽  
pp. 665-687 ◽  
Author(s):  
R M Steinman ◽  
S E Brodie ◽  
Z A Cohn

HRP has been used as a cytochemical marker for a sterelogic analysis of pinocytic vesicles and secondary lysosomes in cultivated macrophages and L cells. Evidence is presented that the diaminobenzidine technique (a) detects all vaculoes containing encyme and (b) distinguishes between incoming pinocytic vesicles and those which have fused with pre-existing lysosomes to form secondary lososomes. The HRP reactive pinocytic vesicle spaces fills completely within 5 min after exposure to enzyme, while the secondary lysosome compartment is saturated in 45--60 min. The size distribution of sectioned (profile) vaculoe diameters was measured at equilibrium and converted to actual (spherical) dimensions using a technique modified from Dr. S. D. Wicksell. The most important findings in this study have to do with the rate at which pinocytosed fluid and surface membrane move into the cell and on their subsequent fate. Each minute macrophages form at least 125 pinocytic vesicles having a fractional vol of 0.43% of the cell's volume and a fractional area of 3.1% of the cell's surface area. The fractional volume and surface area flux rates for L cells were 0.05% and 0.8% per minute respectively. Macrophages and L cells thus interiorize the equivalent of their cell surface area every 33 and 125 min. During a 3-period, the size of the secondary lysosome compartment remains constant and represents 2.5% of the cell volume and 18% of the surface area. Each hour, therefore, the volume and surface area of incoming vesicles is 10 times greater than the dimensions of the secondary lysosomes in both macrophages and L cells. This implies a rapid reduction in vesicle size during the formation of the secondary lysosome and the egress of pinocytosed fluid from the vacuole and the cell. In addition, we postulate that membrane components of the vacuole are subsequently recycled back to the cell surface.


1979 ◽  
Vol 36 (1) ◽  
pp. 343-353
Author(s):  
E. Orias ◽  
L. Rasmussen

We investigated the relative contributions of phagocytosis and plasma membrane transport to the uptake of amino acids and a protein (egg albumin) in amounts which allow Tetrahymena thermophila to grow and multiply. We used a mutant capable of indefinite growth without food vacuole formation (phagocytosis) and its wild type (phagocytosis-competent) isogenic parental strain. Our results suggest that phagocytosis is not required for free amino acid uptake, most or all of which can be attributed to carrier-mediated transport systems, apparently located on the plasma membrane. In contrast, phagocytosis is required for utilization of the protein. Proteins can supply required amino acids in amounts sufficient for growth only when food vacuoles are formed. We conclude that Tetrahymena thermophila either possesses no endocytic mechanisms at the cell surface other than food vacuole formation or, if it does, these putative mechanisms are not capable of nutritionally meaningful rates of protein uptake.


1983 ◽  
Vol 96 (1) ◽  
pp. 29-36 ◽  
Author(s):  
WA Muller ◽  
RM Steinman ◽  
ZA Cohn

In previous publications (Muller, W.A., R.M. Steinman, Z.A. Cohn. 1980, J.Cell Biol. 86:292-314), we found that the membrane of macrophage phagolysosomes could be selectively radioiodinated in living cells, The technique required phagocytosis of lactoperoxidase covalently coupled to latex spheres (LPO-latex), followed by iodination on ice with Na(125)I and hydrogen peroxide. In this paper, we use the LPO-latex system to further analyze the composition and recycling of phagocytic vacuole membrane. Three approaches were employed to examine the polypeptide composition of the phagolysosome (PL) and plasma membranes (PM). (a) The efficiency of intracellular iodination was increased by increasing lysosomal pH with chloroquine. By one-dimensional SDS PAGE, the heavily labeled chloroquine-treated PL exhibited the same labeled polypeptides as PM iodinated extracellularly with LPO-latex. (b) Iodinated PL and PM were compared by two-dimensional gel electrophoresis. No differences in the isoelectric point and molecular weight of the major iodinated species were detected. (c) Quantitative immune precipitation was performed with five specific antibodies directed against cell surface antigens. Four antibodies precipitated similar relative amounts of labeled antigen on the cell surface and endocytic vacuole. One antibody, secreted by hybridoma 2.6, detected a 21-kdalton polypeptide that was enriched sevenfold in PL membrane. This enrichment was cell surface-derived, since the amount of labeled 2.6 was increased sevenfold when iodinated PM was driven into the cell during latex uptake. Therefore, intracellular iodination primarily detects PL proteins that are identical to their PM counterparts. Additional studies employed electron microscope autoradiography to monitor the centrifugal flow of radiolabeled polypeptides from PL to PM. Cells were iodinated intralysosomally and returned to culture for only 5-10 min at 37 degrees C. Most of the cell-associated label then redistributed to the cell surface or its adjacent area. Significant movement out of the lysosome compartment occurred even at 2 degrees C and 22 degrees C. Extensive and rapid membrane flow through the secondary lysosome presumably contributes to the great similarity between PM and PL membrane polypeptides.


1983 ◽  
Vol 62 (1) ◽  
pp. 407-417
Author(s):  
N.E. Williams

The induced synthesis of identified surface membrane proteins has been demonstrated in deciliated Tetrahymena. Cells in the process of regenerating cilia were also studied using transmission electron microscopy in order to obtain information on the deployment of new membrane at the cell surface. The results obtained suggest a pattern of membrane flow that includes the ‘pellicular alveoli’, a subsurface membrane system characteristically present in ciliated protozoa. The results of 125I surface-marking experiments were consistent with the notion that new membrane is added initially in non-ciliated regions, then subsequently flows laterally to cover regenerating cilia.


Sign in / Sign up

Export Citation Format

Share Document