scholarly journals Extracellular vesicles – propagators of neuropathology and sources of potential biomarkers and therapeutics for neurodegenerative diseases

2020 ◽  
Vol 133 (23) ◽  
pp. jcs243139
Author(s):  
Natasha Vassileff ◽  
Lesley Cheng ◽  
Andrew F. Hill

ABSTRACTNeurodegenerative diseases are characterised by the irreversible degeneration of neurons in the central or peripheral nervous systems. These include amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD) and prion diseases. Small extracellular vesicles (sEVs), a type of EV involved in cellular communication, have been well documented as propagating neurodegenerative diseases. These sEVs carry cargo, such as proteins and RNA, to recipient cells but are also capable of promoting protein misfolding, thus actively contributing to the progression of these diseases. sEV secretion is also a compensatory process for lysosomal dysfunction in the affected cells, despite inadvertently propagating disease to recipient cells. Despite this, sEV miRNAs have biomarker potential for the early diagnosis of these diseases, while stem cell-derived sEVs and those generated through exogenous assistance demonstrate the greatest therapeutic potential. This Review will highlight novel advancements in the involvement of sEVs as propagators of neuropathology, biomarkers and potential therapeutics in neurodegenerative diseases.

2021 ◽  
Author(s):  
Luise Linsenmeier ◽  
Behnam Mohammadi ◽  
Mohsin Shafiq ◽  
Karl Frontzek ◽  
Julia Baer ◽  
...  

The cellular prion protein (PrPC) is a central player in neurodegenerative diseases caused by protein misfolding, such as prion diseases or Alzheimer's disease (AD). Expression levels of this GPI-anchored glycoprotein, especially at the neuronal cell surface, critically correlate with various pathomechanistic aspects underlying these diseases, such as templated misfolding (in prion diseases) and neurotoxicity and, hence, with disease progression and severity. In stark contrast to cell-associated PrPC, soluble extracellular forms or fragments of PrP are linked with neuroprotective effects, which is likely due to their ability to interfere with neurotoxic disease-associated protein conformers in the interstitial fluid. Fittingly, the endogenous proteolytic release of PrPC by the metalloprotease ADAM10 ('shedding') was characterized as a protective mechanism. Here, using a recently generated cleavage-site specific antibody, we shed new light on earlier studies by demonstrating that shed PrP (sPrP) negatively correlates with conformational conversion (in prion disease) and is markedly redistributed in murine brain in the presence of prion deposits or AD-associated amyloid plaques indicating a blocking and sequestrating activity. Importantly, we reveal that administration of certain PrP-directed antibodies and other ligands results in increased PrP shedding in cells and organotypic brain slice cultures. We also provide mechanistic and structural insight into this shedding-stimulating effect. In addition, we identified a striking exception to this, as one particular neuroprotective antibody, due to its special binding characteristics, did not cause increased shedding but rather strong surface clustering followed by fast endocytosis and degradation of PrPC. Both mechanisms may contribute to the beneficial action described for some PrP-directed antibodies/ligands and pave the way for new therapeutic strategies against devastating and currently incurable neurodegenerative diseases.


2021 ◽  
Vol 22 (5) ◽  
pp. 2737
Author(s):  
Daisy Sproviero ◽  
Stella Gagliardi ◽  
Susanna Zucca ◽  
Maddalena Arigoni ◽  
Marta Giannini ◽  
...  

Identifying biomarkers is essential for early diagnosis of neurodegenerative diseases (NDs). Large (LEVs) and small extracellular vesicles (SEVs) are extracellular vesicles (EVs) of different sizes and biological functions transported in blood and they may be valid biomarkers for NDs. The aim of our study was to investigate common and different miRNA signatures in plasma derived LEVs and SEVs of Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Fronto-Temporal Dementia (FTD) patients. LEVs and SEVs were isolated from plasma of patients and healthy volunteers (CTR) by filtration and differential centrifugation and RNA was extracted. Small RNAs libraries were carried out by Next Generation Sequencing (NGS). MiRNAs discriminate all NDs diseases from CTRs and they can provide a signature for each NDs. Common enriched pathways for SEVs were instead linked to ubiquitin mediated proteolysis and Toll-like receptor signaling pathways and for LEVs to neurotrophin signaling and Glycosphingolipid biosynthesis pathway. LEVs and SEVs are involved in different pathways and this might give a specificity to their role in the spreading of the disease. The study of common and different miRNAs transported by LEVs and SEVs can be of great interest for biomarker discovery and for pathogenesis studies in neurodegeneration.


Author(s):  
Marina Betancor ◽  
Laura Moreno-Martínez ◽  
Óscar López-Pérez ◽  
Alicia Otero ◽  
Adelaida Hernaiz ◽  
...  

AbstractThe non-toxic C-terminal fragment of the tetanus toxin (TTC) has been described as a neuroprotective molecule since it binds to Trk receptors and activates Trk-dependent signaling, activating neuronal survival pathways and inhibiting apoptosis. Previous in vivo studies have demonstrated the ability of this molecule to increase mice survival, inhibit apoptosis and regulate autophagy in murine models of neurodegenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. Prion diseases are fatal neurodegenerative disorders in which the main pathogenic event is the conversion of the cellular prion protein (PrPC) into an abnormal and misfolded isoform known as PrPSc. These diseases share different pathological features with other neurodegenerative diseases, such as amyotrophic lateral sclerosis, Parkinson’s disease or Alzheimer’s disease. Hitherto, there are no effective therapies to treat prion diseases. Here, we present a pilot study to test the therapeutic potential of TTC to treat prion diseases. C57BL6 wild-type mice and the transgenic mice Tg338, which overexpress PrPC, were intracerebrally inoculated with scrapie prions and then subjected to a treatment consisting of repeated intramuscular injections of TTC. Our results indicate that TTC displays neuroprotective effects in the murine models of prion disease reducing apoptosis, regulating autophagy and therefore increasing neuronal survival, although TTC did not increase survival time in these models.


Neurographics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127-148
Author(s):  
K.N. Anderson ◽  
W.B. Overcast ◽  
J.R. Brosch ◽  
B.D. Graner ◽  
M.C. Veronesi

Protein misfolding has been an area of intense research and is implicated in a number of neurodegenerative diseases. Key proteins in the brain lose their native ability to fold and instead assume abnormal conformations. Misfolded proteins cluster to form pathologic aggregates, which cause cellular dysfunction, neuronal death, and neurodegeneration. The prionopathies are best known among the neurodegenerative diseases for their ability to misfold, self-propagate, and infect other organisms. There is increasing evidence of a rationale for a prionlike mechanism of spread of other neurodegenerative diseases through a similar seeding mechanism. In this review, we detail the role of a key protein aberration known to the various prion diseases, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; variably protease-sensitive prionopathy; Gerstmann-Straussler-Scheinker disease; fatal familial insomnia; and kuru. We also discuss the clinical presentation, the available, and emerging imaging options for these diseases. In the second part of this review, we delineate how a prionlike seeding process may be driving the progression of other neurodegenerative diseases, including Parkinson disease, Alzheimer disease, and Huntington disease. A discussion of clinical presentation and imaging features of these example diseases follows to make a case for a common approach to developing imaging biomarkers and therapies of these diseases.Learning Objective: Upon completion of this article, one should be able to describe the various types of prion diseases, recognize and identify the common the neuro-imaging findings in prion diseases, describe seeding mechanism of prion disease, list the common amyloid PET tracers used for Alzheimer’s disease, and list common imaging biomarkers in neurodegenerative diseases.


2015 ◽  
Vol 89 (15) ◽  
pp. 7660-7672 ◽  
Author(s):  
Leonardo M. Cortez ◽  
Jody Campeau ◽  
Grant Norman ◽  
Marian Kalayil ◽  
Jacques Van der Merwe ◽  
...  

ABSTRACTPrion diseases are fatal neurodegenerative disorders associated with the conversion of cellular prion protein (PrPC) into its aberrant infectious form (PrPSc). There is no treatment available for these diseases. The bile acids tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) have been recently shown to be neuroprotective in other protein misfolding disease models, including Parkinson's, Huntington's and Alzheimer's diseases, and also in humans with amyotrophic lateral sclerosis. Here, we studied the therapeutic efficacy of these compounds in prion disease. We demonstrated that TUDCA and UDCA substantially reduced PrP conversion in cell-free aggregation assays, as well as in chronically and acutely infected cell cultures. This effect was mediated through reduction of PrPScseeding ability, rather than an effect on PrPC. We also demonstrated the ability of TUDCA and UDCA to reduce neuronal loss in prion-infected cerebellar slice cultures. UDCA treatment reduced astrocytosis and prolonged survival in RML prion-infected mice. Interestingly, these effects were limited to the males, implying a gender-specific difference in drug metabolism. Beyond effects on PrPSc, we found that levels of phosphorylated eIF2α were increased at early time points, with correlated reductions in postsynaptic density protein 95. As demonstrated for other neurodegenerative diseases, we now show that TUDCA and UDCA may have a therapeutic role in prion diseases, with effects on both prion conversion and neuroprotection. Our findings, together with the fact that these natural compounds are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans, make these compounds promising alternatives for the treatment of prion diseases.IMPORTANCEPrion diseases are fatal neurodegenerative diseases that are transmissible to humans and other mammals. There are no disease-modifying therapies available, despite decades of research. Treatment targets have included inhibition of protein accumulation, clearance of toxic aggregates, and prevention of downstream neurodegeneration. No one target may be sufficient; rather, compounds which have a multimodal mechanism, acting on different targets, would be ideal. TUDCA and UDCA are bile acids that may fulfill this dual role. Previous studies have demonstrated their neuroprotective effects in several neurodegenerative disease models, and we now demonstrate that this effect occurs in prion disease, with an added mechanistic target of upstream prion seeding. Importantly, these are natural compounds which are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans with primary biliary cirrhosis. They have recently been proven efficacious in human amyotrophic lateral sclerosis. Therefore, these compounds are promising options for the treatment of prion diseases.


2020 ◽  
Author(s):  
Lilian Tsai-Wei Lin ◽  
Abdul Razzaq ◽  
Sonja E. Di Gregorio ◽  
Soojie Hong ◽  
Brendan Charles ◽  
...  

AbstractProtein misfolding is a central feature of most neurodegenerative diseases. Molecular chaperones can modulate the toxicity associated with protein misfolding, but it remains elusive which molecular chaperones and co-chaperones interact with specific misfolded proteins. TDP-43 misfolding and inclusion formation is a hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Using yeast and mammalian neuronal cells we find that Hsp90 and its co-chaperones have a strong capacity to alter TDP-43 misfolding, inclusion formation, aggregation, and cellular toxicity. Our data also demonstrate that impaired Hsp90 function sensitizes cells to TDP-43 toxicity. We further show that the co-chaperone Sti1 specifically interacts with and modulates TDP-43 toxicity in a dose-dependent manner. Our study thus uncovers a previously unrecognized tie between Hsp90, Sti1, TDP-43 misfolding, and its cellular toxicity.


Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 333 ◽  
Author(s):  
Aimee N. Winter ◽  
Paula C. Bickford

Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS), are characterized by the death of neurons within specific regions of the brain or spinal cord. While the etiology of many neurodegenerative diseases remains elusive, several factors are thought to contribute to the neurodegenerative process, such as oxidative and nitrosative stress, excitotoxicity, endoplasmic reticulum stress, protein aggregation, and neuroinflammation. These processes culminate in the death of vulnerable neuronal populations, which manifests symptomatically as cognitive and/or motor impairments. Until recently, most treatments for these disorders have targeted single aspects of disease pathology; however, this strategy has proved largely ineffective, and focus has now turned towards therapeutics which target multiple aspects underlying neurodegeneration. Anthocyanins are unique flavonoid compounds that have been shown to modulate several of the factors contributing to neuronal death, and interest in their use as therapeutics for neurodegeneration has grown in recent years. Additionally, due to observations that the bioavailability of anthocyanins is low relative to that of their metabolites, it has been proposed that anthocyanin metabolites may play a significant part in mediating the beneficial effects of an anthocyanin-rich diet. Thus, in this review, we will explore the evidence evaluating the neuroprotective and therapeutic potential of anthocyanins and their common metabolites for treating neurodegenerative diseases.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 469
Author(s):  
Hasier Eraña ◽  
Jorge M. Charco ◽  
Ezequiel González-Miranda ◽  
Sandra García-Martínez ◽  
Rafael López-Moreno ◽  
...  

Transmissible spongiform encephalopathies or prion diseases are rapidly progressive neurodegenerative diseases, the clinical manifestation of which can resemble other promptly evolving neurological maladies. Therefore, the unequivocal ante-mortem diagnosis is highly challenging and was only possible by histopathological and immunohistochemical analysis of the brain at necropsy. Although surrogate biomarkers of neurological damage have become invaluable to complement clinical data and provide more accurate diagnostics at early stages, other neurodegenerative diseases show similar alterations hindering the differential diagnosis. To solve that, the detection of the pathognomonic biomarker of disease, PrPSc, the aberrantly folded isoform of the prion protein, could be used. However, the amounts in easily accessible tissues or body fluids at pre-clinical or early clinical stages are extremely low for the standard detection methods. The solution comes from the recent development of in vitro prion propagation techniques, such as Protein Misfolding Cyclic Amplification (PMCA) and Real Time-Quaking Induced Conversion (RT-QuIC), which have been already applied to detect minute amounts of PrPSc in different matrixes and make early diagnosis of prion diseases feasible in a near future. Herein, the most relevant tissues and body fluids in which PrPSc has been detected in animals and humans are being reviewed, especially those in which cell-free prion propagation systems have been used with diagnostic purposes.


2021 ◽  
pp. 1-11
Author(s):  
Amir Mohammadi ◽  
Abasalt Hosseinzadeh Colagar ◽  
Ayeh Khorshidian ◽  
Seyed Mohammad Amini

Progressive abnormality and loss of axons and neurons in the central nervous system (CNS) cause neurodegenerative diseases (NDs). Protein misfolding and its collection are the most important pathological features of NDs. Astrocytes are the most plentiful cells in the mammalian CNS (about 20–40% of the human brain) and have several central functions in the maintenance of the health and correct function of the CNS. Astrocytes have an essential role in the preservation of brain homeostasis, and it is not surprising that these multifunctional cells have been implicated in the onset and progression of several NDs. Thus, they become an exciting target for the study of NDs. Over almost 15 years, it was revealed that curcumin has several therapeutic effects in a wide variety of diseases’ treatment. Curcumin is a valuable ingredient present in turmeric spice and has several essential roles, including those which are anticarcinogenic, hepatoprotective, thrombosuppressive, cardioprotective, anti-arthritic, anti-inflammatory, antioxidant, chemopreventive, chemotherapeutic, and anti-infectious. Furthermore, curcumin can suppress inflammation; promote angiogenesis; and treat diabetes, pulmonary problems, and neurological dysfunction. Here, we review the effects of curcumin on astrocytes in NDs, with a focus on Alzheimer’s disease, Parkinson’s disease, multiple scleroses, Huntington’s disease, and amyotrophic lateral sclerosis.


Author(s):  
Kavitha Reddy

Neurodegenerative diseases of protein misfolding affect humans and animals. In humans, these diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Western Pacific amyotrophic lateral sclerosis and Parkinsonism-dementia complex (ALS/PDC). Mineral exposure may be important in the pathogenesis of protein misfolding cascades. The possible association of bentonite, montmorillonite, and mineral risk factors with Alzheimer’s disease, Parkinson’s disease, ALS, and Western Pacific ALS/PDC is analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document