scholarly journals 14-3-3 and Erlin proteins differentially interact with RIPK2 complexes

2021 ◽  
Author(s):  
Heidrun Steinle ◽  
Kornelia Ellwanger ◽  
Nora Mirza ◽  
Selina Brise ◽  
Ioannis Kienes ◽  
...  

The receptor interacting serine/threonine kinase 2 (RIPK2) is essential for signal transduction induced by the pattern-recognition receptors NOD1 and NOD2. Upon NOD1/2 activation RIPK2 forms complexes in the cytoplasm of human cells. Here, we identified the molecular composition of these complexes. Infection with Shigella flexneri to activate NOD1-RIPK2 revealed that RIPK2 formed dynamic interactions with several cellular proteins, including A20, Erlin-1, Erlin-2 and 14-3-3. Whereas interaction of RIPK2 with 14-3-3 proteins was strongly reduced upon infection with Shigella, Erlin-1 and Erlin-2 specifically bound to RIPK2 complexes. The interaction of these proteins with RIPK2 was validated by protein binding assays and immunofluorescence staining. Beside bacterial activation of NOD1/2, depletion of the E3 ligase XIAP and treatment with RIPK2 inhibitors also leads to the formation of RIPK2 cytosolic complexes. Whereas Erlin-1 and Erlin-2 were recruited to RIPK2 complexes following XIAP inhibition, they did not associate with RIPK2 structures induced by RIPK2 inhibitors. While the specific recruitment of Erlin-1/2 to RIPK2 suggests a role for these proteins in innate immune signaling, the biological response regulated by the Erlin-1/2-RIPK2 association remains to be determined.

2008 ◽  
Vol 415 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Meghna Thakur ◽  
Pradip K. Chakraborti

Eukaryotic-type serine/threonine protein kinases in bacteria have been implicated in controlling a host of cellular activities. PknA is one of eleven such protein kinases from Mycobacterium tuberculosis which regulates morphological changes associated with cell division. In the present study we provide the evidence for the ability of PknA to transphosphorylate mMurD (mycobacterial UDP-N-acetylmuramoyl-L-alanine:D-glutamate-ligase), the enzyme involved in peptidoglycan biosynthesis. Its co-expression in Escherichia coli along with PknA resulted in phosphorylation of mMurD. Consistent with these observations, results of the solid-phase binding assays revealed a high-affinity in vitro binding between the two proteins. Furthermore, overexpression of m-murD in Mycobacterium smegmatis yielded a phosphorylated protein. The results of the present study therefore point towards the possibility of mMurD being a substrate of PknA.


1994 ◽  
Vol 5 (6) ◽  
pp. 389-398 ◽  
Author(s):  
Kohei Miyazono ◽  
Peter ten Dijke ◽  
Hidetoshi Yamashita ◽  
Carl-Henrik Heldin

2021 ◽  
Vol 12 ◽  
Author(s):  
Yunqiang Chen ◽  
Yuheng Shi ◽  
Jing Wu ◽  
Nan Qi

Mitochondrial antiviral signaling protein (MAVS) functions as a “switch” in the immune signal transduction against most RNA viruses. Upon viral infection, MAVS forms prion-like aggregates by receiving the cytosolic RNA sensor retinoic acid-inducible gene I-activated signaling and further activates/switches on the type I interferon signaling. While under resting state, MAVS is prevented from spontaneously aggregating to switch off the signal transduction and maintain immune homeostasis. Due to the dual role in antiviral signal transduction and immune homeostasis, MAVS has emerged as the central regulation target by both viruses and hosts. Recently, researchers show increasing interest in viral evasion strategies and immune homeostasis regulations targeting MAVS, especially focusing on the post-translational modifications of MAVS, such as ubiquitination and phosphorylation. This review summarizes the regulations of MAVS in antiviral innate immune signaling transduction and immune homeostasis maintenance.


Author(s):  
Novriantika Lestari

Liver fibrosis is a reversible response to a wound healing with marked accumulation of extracellular matrix which caused by injury to the liver. Liver fibrosis can be caused by various factors including alcohol and non-alcohol steatohepatitis. The process of fibrosis serves to localize the inflammation during chronic exposure. The hepatic stem cell (HSC) has a key role in the pathogenesis of liver fibrosis. The HSC activation is characterized by increased profibrogenic mediators including members of the TGF-? superfamily. In order to enable signal transduction, the mediator needs to bind to its receptors. The serine/ threonine kinase receptor is a receptor that binds to the TGF-? superfamily ligand, including TGF-?, BMP, activin and other mediators. The ligand receptor-binding activity will stimulate signal transduction that will translocate into the nucleus and phosphorylate various transcription factors that play a role in cell proliferation, differentiation, or apoptosis. There is currently no standard therapy for liver fibrosis. Based on the central role of the serine/ threonine kinase receptor in the pathogenesis of liver fibrosis, it is thought that the use of serine/ threonine kinase inhibitors is a promising therapy.


Development ◽  
1997 ◽  
Vol 124 (16) ◽  
pp. 3167-3176 ◽  
Author(s):  
S.J. Newfeld ◽  
A. Mehra ◽  
M.A. Singer ◽  
J.L. Wrana ◽  
L. Attisano ◽  
...  

Mothers against dpp (Mad) is the prototype of a family of genes required for signaling by TGF-beta related ligands. In Drosophila, Mad is specifically required in cells responding to Decapentaplegic (DPP) signals. We further specify the role of Mad in DPP-mediated signaling by utilizing tkvQ199D, an activated form of the DPP type I receptor serine-threonine kinase thick veins (tkv). In the embryonic midgut, tkvQ199D mimics DPP-mediated inductive interactions. Homozygous Mad mutations block signaling by tkvQ199D. Appropriate responses to signaling by tkvQ199D are restored by expression of MAD protein in DPP-target cells. Endogenous MAD is phosphorylated in a ligand-dependent manner in Drosophila cell culture. DPP overexpression in the embryonic midgut induces MAD nuclear accumulation; after withdrawal of the overexpressed DPP signal, MAD is detected only in the cytoplasm. However, in three different tissues and developmental stages actively responding to endogenous DPP, MAD protein is detected in the cytoplasm but not in the nucleus. From these observations, we discuss possible roles for MAD in a DPP-dependent serine-threonine kinase signal transduction cascade integral to the proper interpretation of DPP signals.


2017 ◽  
Vol 4 (4) ◽  
pp. 1380 ◽  
Author(s):  
Jiahai Chen ◽  
Xiaoli Yang

Background: Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. The objective was to investigate the role of serine/threonine kinase Pim-2 in apoptosis signal transduction pathway, because there is little study about its contribution to apoptosis in hepatocellular carcinoma.Methods: The Pim-2 gene and protein expression were examined by qRT-PCR, Western blot and immunohistochemical stain in HCC tissues and normal liver tissues. The plasmid pCI-neo-Pim2 was transfected into human hepatoma cell line SMMC7721 by lipofectamine. Total RNAs were extracted from SMMC7721 cell in logarithm growth phase. The mRNA expression of Pim-2, Akt-1 (protein kinase B), 4E-BP1 (translation repressor of mammalian target of rapamycln), SOCS-1 (repressor of cytokine), Bad(Bcl-xL/Bcl-2 associated death promoter, Bim(Bc1-2 interacting mediator of cell death)and Puma (p53 upregulated modulator of apoptosis) were identified by qRT-PCR. The cell cycle of post-transfected SMMC7721 cells was assessed by flow cytometry.Results: Pim-2 expression was enhanced in HCC. In post-transfected SMMC7721 cells, Pim-2 mRNA expression was up-regulated, level of Bad mRNA was attenuated, furthermore, the transcription level of Akt-1, SOCS-1, 4E-BP1, Bim and Puma gene wasn’t variety. Up-graulated Pim-2 can’t cause distinct change of cell cycle or apoptosis in hepatoma cell.Conclusions: The serine/threonine kinase Pim-2 plays an import role in the development of HCC, Pim-2 dependent maintenance of cell size and survival correlated with its ability to maintain down-regulated expression of the BH3 protein Bad. Pim-2 is not a trigger in cell-autonomous survival or inhibiting apoptosis in hepatocellular carcinoma. Pim-2 is a redundancy pathway of survival signaling.


2003 ◽  
Vol 23 (11) ◽  
pp. 3897-3908 ◽  
Author(s):  
Benjamin Deneen ◽  
Scott M. Welford ◽  
Thu Ho ◽  
Felicia Hernandez ◽  
Irwin Kurland ◽  
...  

ABSTRACT Despite significant structural diversity, present evidence suggests that EWS/ETS fusion proteins promote oncogenesis by transcriptionally modulating a common set of target genes. In order to identify these genes, microarray expression analyses were performed on NIH 3T3 polyclonal populations expressing one of three EWS/ETS fusion genes. The majority of these genes can be grouped into seven functional categories, including cellular metabolism and signal transduction. The biologic significance of these target genes was pursued. The effects of modulating genes involved in metabolism were assessed by flux studies and demonstrated shifts in glucose utilization and lactate production as a result of EWS/FLI1 expression. The proto-oncogene coding for serine/threonine kinase PIM3 was found to one of several genes encoding signal transduction proteins that were up-regulated by EWS/ETS fusions. PIM3 was found to be expressed in a panel of human Ewing's family tumor cell lines. Forced expression of PIM3 promoted anchorage-independent growth. Coexpression of a kinase-deficient PIM3 mutant attenuated EWS/FLI1-mediated NIH 3T3 tumorigenesis in immunodeficent mice.


2021 ◽  
Author(s):  
Daltry L Snider ◽  
Moonhee Park ◽  
Kristen A Murphy ◽  
Dia C Beachboard ◽  
Stacy M Horner

The RNA binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFN). This signal transduction occurs at endoplasmic reticulum (ER)-mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, UFL1, as one of the proteins recruited to membranes at ER-mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We find that following RNA virus infection, UFL1 is recruited to the membrane targeting protein 14-3-3ε, and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, loss of ufmylation prevents 14-3-3ε interaction with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a post-translational control for IFN induction.


Sign in / Sign up

Export Citation Format

Share Document