scholarly journals First person – Nadine Pollak

2021 ◽  
Vol 134 (24) ◽  

ABSTRACT First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Nadine Pollak is first author on ‘ Cell cycle progression and transmitotic apoptosis resistance promote escape from extrinsic apoptosis’, published in JCS. Nadine conducted the research described in this article while a postdoc at the Institute of Cell Biology and Immunology, University of Stuttgart, Germany, initially under the supervision of Prof. Peter Scheurich and subsequently in the lab of Prof. Markus Rehm, where she is now investigating the mechanisms underlying cell fate decisions in response to death stimuli throughout the cell cycle at the single-cell level.

2021 ◽  
Author(s):  
Nadine Pollak ◽  
Aline Lindner ◽  
Dirke Imig ◽  
Karsten Kuritz ◽  
Jacques S. Fritze ◽  
...  

Extrinsic apoptosis relies on TNF-family receptor activation by immune cells or receptor-activating biologics. Here, we monitored cell cycle progression at minutes resolution to relate apoptosis kinetics and cell-to-cell heterogeneities in death decisions to cell cycle phases. Interestingly, we found that cells in S phase delay TRAIL receptor-induced death in favour for mitosis, thereby passing on an apoptosis-primed state to their offspring. This translates into two distinct fates, apoptosis execution post mitosis or cell survival from inefficient apoptosis. Transmitotic resistance is linked to Mcl-1 upregulation and increased accumulation at mitochondria from mid S phase onwards, which allows cells to pass through mitosis with activated caspase-8, and with cells escaping apoptosis after mitosis sustaining sublethal DNA damage. Antagonizing Mcl-1 suppresses cell cycle-dependent delays in apoptosis, prevents apoptosis-resistant progression through mitosis and averts unwanted survival from apoptosis induction. Cell cycle progression therefore modulates signal transduction during extrinsic apoptosis, with Mcl-1 governing decision making between death, proliferation and survival. Cell cycle progression thus is a crucial process from which cell-to-cell heterogeneities in fates and treatment outcomes emerge in isogenic cell populations during extrinsic apoptosis.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Corinne L. A. Fairchild ◽  
Simranjeet K. Cheema ◽  
Joanna Wong ◽  
Keiko Hino ◽  
Sergi Simó ◽  
...  

Abstract In the neural progenitors of the developing central nervous system (CNS), cell proliferation is tightly controlled and coordinated with cell fate decisions. Progenitors divide rapidly during early development and their cell cycle lengthens progressively as development advances to eventually give rise to a tissue of the correct size and cellular composition. However, our understanding of the molecules linking cell cycle progression to developmental time is incomplete. Here, we show that the microRNA (miRNA) let-7 accumulates in neural progenitors over time throughout the developing CNS. Intriguingly, we find that the level and activity of let-7 oscillate as neural progenitors progress through the cell cycle by in situ hybridization and fluorescent miRNA sensor analyses. We also show that let-7 mediates cell cycle dynamics: increasing the level of let-7 promotes cell cycle exit and lengthens the S/G2 phase of the cell cycle, while let-7 knock down shortens the cell cycle in neural progenitors. Together, our findings suggest that let-7 may link cell proliferation to developmental time and regulate the progressive cell cycle lengthening that occurs during development.


2021 ◽  
Author(s):  
Nadine Pollak ◽  
Aline Lindner ◽  
Dirke Imig ◽  
Karsten Kuritz ◽  
Jacques S. Fritze ◽  
...  

AbstractExtrinsic apoptosis relies on TNF-family receptor activation by immune cells or receptor-activating biologics. Here, we monitored cell cycle progression at minutes resolution to relate apoptosis kinetics and cell-to-cell heterogeneities in death decisions to cell cycle phases. Interestingly, we found that cells in S phase delay TRAIL receptor-induced death in favour for mitosis, thereby passing on an apoptosis-primed state to their offspring. This translates into two distinct fates, apoptosis execution post mitosis or cell survival from inefficient apoptosis. Transmitotic resistance is linked to Mcl-1 upregulation from mid S phase onwards, which allows cells to pass through mitosis with activated caspase-8, and with cells escaping apoptosis after mitosis sustaining sublethal DNA damage. Antagonizing Mcl-1 by BH3-mimetics suppresses cell cycle-dependent delays in apoptosis, prevents apoptosis-resistant progression through mitosis and averts unwanted survival from apoptosis induction. Cell cycle progression therefore modulates signal transduction during extrinsic apoptosis, with Mcl-1 governing decision making between death, proliferation and survival from inefficient apoptosis induction. Cell cycle progression thus is a crucial process from which cell-to-cell heterogeneities in fates and treatment outcomes emerge in isogenic cell populations during extrinsic apoptosis signalling.


2011 ◽  
Vol 195 (3) ◽  
pp. 499-513 ◽  
Author(s):  
Pengbo Wang ◽  
Christoph Ballestrem ◽  
Charles H. Streuli

Integrins are cell adhesion receptors that sense the extracellular matrix (ECM) environment. One of their functions is to regulate cell fate decisions, although the question of how integrins initiate intracellular signaling is not fully resolved. In this paper, we examine the role of talin, an adapter protein at cell–matrix attachment sites, in outside-in signaling. We used lentiviral small hairpin ribonucleic acid to deplete talin in mammary epithelial cells. These cells still attached to the ECM in an integrin-dependent manner and spread. They had a normal actin cytoskeleton, but vinculin, paxillin, focal adhesion kinase (FAK), and integrin-linked kinase were not recruited to adhesion sites. Talin-deficient cells showed proliferation defects, and reexpressing a tail portion of the talin rod, but not its head domain, restored integrin-mediated FAK phosphorylation, suppressed p21 expression, and rescued cell cycle. Thus, talin recruits and activates focal adhesion proteins required for proliferation via the C terminus of its rod domain. Our study reveals a new function for talin, which is to link integrin adhesions with cell cycle progression.


Author(s):  
Mireya Ruiz-Losada ◽  
Raul González ◽  
Ana Peropadre ◽  
Alejandro Gil-Gálvez ◽  
Juan J. Tena ◽  
...  

AbstractExposure to genotoxic stress promotes cell cycle arrest and DNA repair or apoptosis. These “life” or “death” cell fate decisions often rely on the activity of the tumor suppressor gene p53. Therefore, the precise regulation of p53 is essential to maintain tissue homeostasis and to prevent cancer development. However, how cell cycle progression has an impact on p53 cell fate decision-making is mostly unknown. In this work, we demonstrate that Drosophila p53 proapoptotic activity can be impacted by the G2/M kinase Cdk1. We find that cell cycle arrested or endocycle-induced cells are refractory to ionizing radiation-induced apoptosis. We show that p53 binding to the regulatory elements of the proapoptotic genes and its ability to activate their expression is compromised in experimentally arrested cells. Our results indicate that p53 genetically and physically interacts with Cdk1 and that p53 proapoptotic role is regulated by the cell cycle status of the cell. We propose a model in which cell cycle progression and p53 proapoptotic activity are molecularly connected to coordinate the appropriate response after DNA damage.


Development ◽  
2011 ◽  
Vol 138 (11) ◽  
pp. 2223-2234 ◽  
Author(s):  
P. M. Fox ◽  
V. E. Vought ◽  
M. Hanazawa ◽  
M.-H. Lee ◽  
E. M. Maine ◽  
...  

Open Biology ◽  
2015 ◽  
Vol 5 (3) ◽  
pp. 140156 ◽  
Author(s):  
Didier J. Colin ◽  
Karolina O. Hain ◽  
Lindsey A. Allan ◽  
Paul R. Clarke

Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-x L by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.


2021 ◽  
Author(s):  
Mireya Ruiz-Losada ◽  
Raul González ◽  
Ana Peropadre ◽  
Antonio Baonza ◽  
Carlos Estella

SummaryExposure to genotoxic stress promotes cell-cycle arrest and DNA repair or apoptosis. These “life” or “death” cell fate decisions often rely on the activity of the tumor suppressor gene p53. Therefore, how p53 activity is precisely regulated is essential to maintain tissue homeostasis and to prevent cancer development. Here we demonstrate that Drosophila p53 pro-apoptotic activity is regulated by the G2/M kinase Cdk1. We find that cell cycle arrested or endocycle-induced cells are refractory to ionizing radiation induced apoptosis. We show that the p53 protein is not able to bind to and to activate the expression of the pro-apoptotic genes in experimentally arrested cells. Our results indicate that p53 genetically and physically interacts with Cdk1 and that p53 pro-apoptotic role is regulated by the cell cycle status of the cell. We propose a model in which cell cycle progression and p53 pro-apoptotic activity are molecularly connected to coordinate the appropriate response after DNA damage.


Sign in / Sign up

Export Citation Format

Share Document