scholarly journals Mechanical tension produced by nerve cells in tissue culture

1979 ◽  
Vol 37 (1) ◽  
pp. 391-410 ◽  
Author(s):  
D. Bray

Evidence is presented that (a) the growth cone of cultured neurons can exert mechanical tension, and (b) that the direction of advance of the growth cone is determined by the tension existing between it and the rest of the cell. (a) The evidence that growth cones can pull comes from a vectorial analysis of the outlines of individually isolated sensory neurons. The angles formed in these outgrowths are very close to those of tension-generated networks anchored at their free ends and these values are restored shortly after an experimental displacement. The relative mechanical tension on each segment of an outgrowth can be calculated by standard methods and is found to decrease at each branch point. It appears to be correlated with the diameter of the fibre so that thicker fibres maintain more tension than thinner ones. (b) The influence of tension on the direction of advance of the growth cone is shown by 2 kinds of experient. If a growing neurite is pulled to one side with a microelectrode then the direction of its advance is changed immediately according to the new stress. If the mechanical tension on the growth cone of a neurite is released by amputation or displacement the growth cone is found to have a high probability of branching shortly afterwards. The ability of the growth cone to exert tension is discussed in relation to evidence that microspikes have contractile properties and in terms of the distribution of microfilaments within the neurite. It is suggested that the exertion of tension by a growth cone could serve to guide the neurite along paths of high adhesivity both in vitro and in vivo.

Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1275-1283 ◽  
Author(s):  
W. Shoji ◽  
C.S. Yee ◽  
J.Y. Kuwada

The semaphorin/collapsin gene family encodes secreted and transmembrane proteins several of which can repulse growth cones. Although the in vitro activity of Semaphorin III/D/Collapsin 1 is clear, recent analyses of two different strains of semaphorin III/D/collapsin 1 knockout mice have generated conflicting findings. In order to clarify the in vivo action of this molecule, we analyzed sema Z1a, a zebrafish homolog of semaphorin III/D/collapsin 1. The expression pattern of sema Z1a suggested that it delimited the pathway of the growth cones of a specific set of sensory neurons, the posterior ganglion of the lateral line, in zebrafish. To examine the in vivo action of this molecule, we analyzed (1) the pathways followed by lateral line growth cones in mutants in which the expression of sema Z1a is altered in an interesting way, (2) response of lateral line growth cones to exogenous Sema Z1a in living embryos, and (3) the pathway followed by lateral line growth cones when Sema Z1a is misexpressed by cells along their normal route. The results suggest that a repulsive action of Sema Z1a helps guide the growth cones of the lateral line along their normal pathway.


1994 ◽  
Vol 107 (10) ◽  
pp. 2961-2973 ◽  
Author(s):  
L. Had ◽  
C. Faivre-Sarrailh ◽  
C. Legrand ◽  
J. Mery ◽  
J. Brugidou ◽  
...  

Antipeptide antisera specific for TM-4 and TMBr-3, the two tropomyosin isoforms in neurons, were used to investigate the concentrations and distributions of these F-actin-binding proteins in neurons in vitro and in vivo. TM-4 and TMBr-3 tropomyosins had different developmental profiles. TM-4 was found mainly in immature stages, while the concentration of TMBr-3 increased with maturation. The two isoforms also had different subcellular distributions. TM-4 was concentrated in the growth cones of cultured neurons and, in vivo, in areas where neurites were growing. Later, when development was complete, TM-4 was restricted to postsynaptic sites in the cerebellar cortex, whereas TMBr-3 was found in the presynaptic terminals. These data suggest that the tropomyosin isoforms have different functions, through their interaction with the actin cytoskeleton. TM-4 may be involved in the motile events of neurite growth and synaptic plasticity, while TMBr-3 could play a role in stabilizing neuronal networks and synaptic functioning.


2018 ◽  
Vol 218 (1) ◽  
pp. 350-379 ◽  
Author(s):  
Maria M. Bagonis ◽  
Ludovico Fusco ◽  
Olivier Pertz ◽  
Gaudenz Danuser

Growth cones are complex, motile structures at the tip of an outgrowing neurite. They often exhibit a high density of filopodia (thin actin bundles), which complicates the unbiased quantification of their morphologies by software. Contemporary image processing methods require extensive tuning of segmentation parameters, require significant manual curation, and are often not sufficiently adaptable to capture morphology changes associated with switches in regulatory signals. To overcome these limitations, we developed Growth Cone Analyzer (GCA). GCA is designed to quantify growth cone morphodynamics from time-lapse sequences imaged both in vitro and in vivo, but is sufficiently generic that it may be applied to nonneuronal cellular structures. We demonstrate the adaptability of GCA through the analysis of growth cone morphological variation and its relation to motility in both an unperturbed system and in the context of modified Rho GTPase signaling. We find that perturbations inducing similar changes in neurite length exhibit underappreciated phenotypic nuance at the scale of the growth cone.


Development ◽  
1982 ◽  
Vol 69 (1) ◽  
pp. 237-250
Author(s):  
Alan Roberts ◽  
J. S. H. Taylor

The formation of the sensory neurite plexus on the basal lamina of trunk skin in Xenopus embryos has been examined using the scanning electron microscope. It is formed by Rohon-Beard and extramedullary neurons which provide the first sensory innervation of the skin. By observing the distribution of growth cones on the inside surface of the skin of embryos at different ages, the development of the plexus has been followed and related to the development of sensitivity to sensory stimulation. The general features of the plexus are illustrated using a photomontage taken at × 1100. Measurements on neurites from this, and of growth cone orientations demonstrate a general ventral growth pattern with some small regional variations. Interactions of neurites within the plexus are examined. Neurites meeting at shallow angles tend to fasciculate, whilethose meeting at close to 90° tend to cross each other. Angles of incidence and separation of neurites show few angles less than 30°, which suggests that active adjustments occur after a growth cone meets or leaves another neurite. The observations allow comparison of behaviour of growing neurites in vivo and in vitro. Our evidence suggests that adhesion between growth cones and neurites is stronger than that between growth cones and the basal lamina of the skin.


1995 ◽  
Vol 129 (5) ◽  
pp. 1355-1362 ◽  
Author(s):  
K K Briggs ◽  
A J Silvers ◽  
K M Johansen ◽  
J Johansen

The mAb lan3-6 recognizes a cytosolic antigen which is selectively expressed in the growth cones and axons of a small subset of peripheral sensory neurons fasciculating in a single tract common to all hirudinid leeches. We have used this antibody to clone a novel EF-hand calcium-binding protein, calsensin, by screening an expression vector library. A full-length clone of 1.1 kb identified by the antibody was isolated and sequenced. In situ hybridizations with calsensin probes and antibody staining using new polyclonal antisera generated against calsensin sequence demonstrate that calsensin indeed corresponds to the lan3-6 antigen. Calsensin consists of 83 residues with a calculated molecular mass of 9.1 kD that contains two helix-loop-helix domains. The calcium-binding domains are likely to be functional in vivo since a fusion protein derived from the calsensin clone binds 45Ca2+ in vitro. Immunoaffinity purification experiments with the lan3-6 antibody shows that a large 200,000 M(r) protein selectively copurifies with calsensin in two different leech species. These results suggest that calsensin may be functioning as a trigger protein which interacts with the larger protein. These data are consistent with the hypothesis that calsensin may mediate calcium-dependent signal transduction events in the growth cones and axons of this small group of sensory neurons which fasciculate in a single axon tract.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Huyen Nguyen ◽  
Peter Dayan ◽  
Zac Pujic ◽  
Justin Cooper-White ◽  
Geoffrey J Goodhill

Correct wiring is crucial for the proper functioning of the nervous system. Molecular gradients provide critical signals to guide growth cones, which are the motile tips of developing axons, to their targets. However, in vitro, growth cones trace highly stochastic trajectories, and exactly how molecular gradients bias their movement is unclear. Here, we introduce a mathematical model based on persistence, bias, and noise to describe this behaviour, constrained directly by measurements of the detailed statistics of growth cone movements in both attractive and repulsive gradients in a microfluidic device. This model provides a mathematical explanation for why average axon turning angles in gradients in vitro saturate very rapidly with time at relatively small values. This work introduces the most accurate predictive model of growth cone trajectories to date, and deepens our understanding of axon guidance events both in vitro and in vivo.


2021 ◽  
Vol 22 (16) ◽  
pp. 8367
Author(s):  
Hien Lau ◽  
Shiri Li ◽  
Nicole Corrales ◽  
Samuel Rodriguez ◽  
Mohammadreza Mohammadi ◽  
...  

Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8–15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.


1991 ◽  
Vol 331 (1261) ◽  
pp. 259-262

In the developing vertebrate nervous system the survival of neurons becomes dependent on the supply of a neurotrophic factor from their targets when their axons reach these targets. To determine how the onset of neurotrophic factor dependency is coordinated with the arrival of axons in the target field, we have studied the growth and survival of four populations of cranial sensory neurons whose axons have markedly different distances to grow to reach their targets. Axonal growth rate both in vivo and in vitro is related to target distance; neurons with more distant targets grow faster. The onset trophic factor dependency in culture is also related to target distance; neurons with more distant targets survive longer before becoming trophic factor dependent. These data suggest that programmes of growth and survival in early neurons play an important role in coordinating the timing of trophic interactions in the developing nervous system.


1961 ◽  
Vol 9 (2) ◽  
pp. 369-381 ◽  
Author(s):  
D. F. Parsons ◽  
M. A. Bender ◽  
E. B. Darden ◽  
Guthrie T. Pratt ◽  
D. L. Lindsley

The X5563 tumor has been grown in tissue culture. Cells similar to those of the original tumor migrated from the explant and attached to the glass walls of the culture vessels. Electron microscopy showed that large numbers of particles, similar in morphology to virus particles, were associated with these cells after 7 days of culture. The two principal types of particles found in the tumor in vivo appear to be present in vitro. Many more of these particles, however, were larger and showed a more complex structure. Whereas the particles were mainly localized inside endoplasmic reticulum or the Golgi zone in the tumors in vivo, in the tissue culture the majority of the particles were associated with the plasma membrane and were found outside of the cells. The relation of the particles to the granular body is discussed as well as a possible relation to the mammary tumor agent.


Sign in / Sign up

Export Citation Format

Share Document