Type I collagen permits invasive behaviour by retinal pigmented epithelial cells in vitro

1987 ◽  
Vol 87 (3) ◽  
pp. 399-409
Author(s):  
R.J. Docherty ◽  
J.V. Forrester ◽  
J.M. Lackie

Epithelial cells cultured on type I collagen gels adopt a typical apical—basal polarity and undergo differentiation. We have compared the behaviour of chick embryo retinal pigmented epithelial (RPE) cells on collagen and on plastic with and without gelatin coats. RPE cell proliferation was similar on all three substrata, and post-confluent cultures exhibited multilayering. On plastic and gelatin-coated plastic, dome formation, typical of transporting epithelia, occurred. On type I collagen gels, however, dome formation did not occur, but rather invasion of the gel matrix by cords of epithelial cells took place. In contrast, invasive behaviour of the cells was markedly reduced on type IV coated collagen gels, particularly in the presence of laminin. These results illustrate the prominent role of the extracellular matrix on phenotypic expression by RPE cells and may represent a more general phenomenon.

1985 ◽  
Vol 33 (7) ◽  
pp. 655-664 ◽  
Author(s):  
S Berrih ◽  
W Savino ◽  
S Cohen

The immunohistochemical detection of elements of the human thymic extracellular matrix in situ and in vitro is described. In the normal thymus, the intracapsular and intraseptal fibers were strongly labeled by anti-type I collagen antiserum. Basement membranes bordering the capsule, septae, and perivascular spaces were intensely stained by anti-type IV collagen, anti-fibronectin, and anti-laminin sera. In hyperplastic myasthenia gravis thymuses, the major changes consisted of discontinuities of the basement membrane adjacent to clusters of epithelial (keratin-containing) cells, among which an unusual connective framework (densely labeled by all the antisera) was observed. In vitro, most epithelial cells were strongly labeled by antifibronectin serum and to a lesser extent by the anti-type IV collagen and anti-laminin sera. In addition, fibronectin, laminin, and type IV collagen were detected in the intercellular spaces bordering the epithelial cells in culture. Results show that thymic epithelial cells participate in the synthesis of extracellular matrix elements, which as a result of their localization and influence on epithelial cell growth, should be regarded as constitutive components of the thymic microenvironment.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Martin Liu ◽  
Angelos Karagiannis ◽  
Matthew Sis ◽  
Srivatsan Kidambi ◽  
Yiannis Chatzizisis

Objectives: To develop and validate a 3D in-vitro model of atherosclerosis that enables direct interaction between various cell types and/or extracellular matrix. Methods and Results: Type I collagen (0.75 mg/mL) was mixed with human artery smooth muscle cells (SMCs; 6x10 5 cells/mL), medium, and water. Human coronary artery endothelial cells (HCAECs; 10 5 /cm 2 ) were plated on top of the collagen gels and activated with oxidized low density lipoprotein cholesterol (LDL-C). Monocytes (THP-1 cells; 10 5 /cm 2 ) were then added on top of the HCAECs. Immunofluorescence showed the expression of VE-cadherin by HCAECs (A, B) and α-smooth muscle actin by SMCs (A). Green-labelled LDL-C particles were accumulated in the subendothelial space, as well as in the cytoplasm of HCAECs and SMCs (C). Activated monocytes were attached to HCAECs and found in the subendothelial area (G-I). Both HCAECs and SMCs released IL-1β, IL-6, IL-8, PDGF-BB, TGF-ß1, and VEGF. Scanning and transmission electron microscopy showed the HCAECs monolayer forming gap junctions and the SMCs (D-F) and transmigrating monocytes within the collagen matrix (G-I). Conclusions: In this work, we presented a novel, easily reproducible and functional in-vitro experimental model of atherosclerosis that has the potential to enable in-vitro sophisticated molecular and drug development studies.


Author(s):  
Lowell Taylor Edgar ◽  
Margaret Julias ◽  
David I. Shreiber ◽  
Helen M. Buettner

Acupuncture is a traditional therapy originating in China almost 2000 years ago. Acupuncture has slowly been growing in popularity in the West, and clinical evidence has shown the potential for acupuncture as a low-cost ‘alternative’ therapy for an assortment of ailments [1]. The practice of acupuncture involves inserting fine needles into the skin followed by needle manipulation, usually by rotation. Recent studies by Langevin et al demonstrate that this rotation causes the subcutaneous connective tissue to couple to and wind around the needle [2–4], which suggests that mechanotransduction in the connective tissue might play a role in the therapeutic mechanisms that underlay acupuncture [2, 3]. To begin to decompose and quantify this complex mechanism at the tissue level in a controlled setting, we have simulated acupuncture in type I collagen gels in vitro, and have developed algorithms to quantify the tissue response following imaging with polarized light microscopy (PLM).


2000 ◽  
Vol 350 (3) ◽  
pp. 777-783 ◽  
Author(s):  
Jean-Claude MONBOISSE ◽  
Laure RITTIE ◽  
Hasnae LAMFARRAJ ◽  
Roselyne GARNOTEL ◽  
Philippe GILLERY

Glycation and glycoxidation processes, which are increased in diabetes mellitus, are generally considered causative mechanisms of long-term complications. With reference to our previous studies, type-I and -IV collagens could induce differentially the adhesion and stimulation of polymorphonuclear leucocytes (PMNs). As PMNs play a role in sustained diabetic oxidative stress, the present study was designed to determine whether in vitro glycoxidation of these macromolecules could alter PMN adhesion, activation and migration. The adhesion of PMNs to in vitro-glycoxidized collagens was significantly increased when compared with control collagens: +37% (P < 0.05) and +99% (P < 0.01) for collagens I and IV, respectively. Glycoxidized type-I collagen increased the chemotactic properties of PMNs without significant stimulatory effect on respiratory burst, whereas pre-incubation of PMNs with glycoxidized type-I collagen induced a priming on subsequent stimulation by N-formyl-methionyl-leucyl-phenylalanine. Glycoxidation of type-IV collagen suppressed its inhibitory effect on further PMN stimulation or migration. Collectively, these results indicate that glycoxidation of two major extracellular-matrix collagens considerably alters their ability to modulate PMN migration and production of reactive oxygen species. This imbalance in PMN metabolism may be a major event in the increased oxidative status that characterizes diabetes mellitus.


1995 ◽  
Vol 130 (2) ◽  
pp. 393-405 ◽  
Author(s):  
F Strutz ◽  
H Okada ◽  
C W Lo ◽  
T Danoff ◽  
R L Carone ◽  
...  

We performed subtractive and differential hybridization for transcript comparison between murine fibroblasts and isogenic epithelium, and observed only a few novel intracellular genes which were relatively specific for fibroblasts. One such gene encodes a filament-associated, calcium-binding protein, fibroblast-specific protein 1 (FSP1). The promoter/enhancer region driving this gene is active in fibroblasts but not in epithelium, mesangial cells or embryonic endoderm. During development, FSP1 is first detected by in situ hybridization after day 8.5 as a postgastrulation event, and is associated with cells of mesenchymal origin or of fibroblastic phenotype. Polyclonal antiserum raised to recombinant FSP1 protein stained the cytoplasm of fibroblasts, but not epithelium. Only occasional cells stain with specific anti-FSP1 antibodies in normal parenchymal tissue. However, in kidneys fibrosing from persistent inflammation, many fibroblasts could be identified in interstitial sites of collagen deposition and also in tubular epithelium adjacent to the inflammatory process. This pattern of anti-FSP1 staining during tissue fibrosis suggests, as a hypothesis, that fibroblasts in some cases arise, as needed, from the local conversion of epithelium. Consistent with this notion that FSP1 may be involved in the transition from epithelium to fibroblasts are experiments in which the in vitro overexpression of FSP1 cDNA in tubular epithelium is accompanied by conversion to a mesenchymal phenotype, as characterized by a more stellate and elongated fibroblast-like appearance, a reduction in cytokeratin, and new expression of vimentin. Similarly, tubular epithelium submerged in type I collagen gels exhibited the conversion to a fibroblast phenotype which includes de novo expression of FSP1 and vimentin. Use of the FSP1 marker, therefore, should further facilitate both the in vivo studies of fibrogenesis and the mapping of cell fate among fibroblasts.


1990 ◽  
Vol 110 (4) ◽  
pp. 1405-1415 ◽  
Author(s):  
C H Streuli ◽  
M J Bissell

Reconstituted basement membranes and extracellular matrices have been demonstrated to affect, positively and dramatically, the production of milk proteins in cultured mammary epithelial cells. Here we show that both the expression and the deposition of extracellular matrix components themselves are regulated by substratum. The steady-state levels of the laminin, type IV collagen, and fibronectin mRNAs in mammary epithelial cells cultured on plastic dishes and on type I collagen gels have been examined, as has the ability of these cells to synthesize, secrete, and deposit laminin and other, extracellular matrix proteins. We demonstrate de novo synthesis of a basement membrane by cells cultured on type I collagen gels which have been floated into the medium. Expression of the mRNA and proteins of basement membranes, however, are quite low in these cultures. In contrast, the levels of laminin, type IV collagen, and fibronectin mRNAs are highest in cells cultured on plastic surfaces, where no basement membrane is deposited. It is suggested that the interaction between epithelial cells and both basement membrane and stromally derived matrices exerts a negative influence on the expression of mRNA for extracellular matrix components. In addition, we show that the capacity for lactational differentiation correlates with conditions that favor the deposition of a continuous basement membrane, and argue that the interaction between specialized epithelial cells and stroma enables them to create their own microenvironment for accurate signal transduction and phenotypic function.


2004 ◽  
Vol 82 (2) ◽  
pp. 144-153 ◽  
Author(s):  
Anthony N Vomund ◽  
Stephen R Braddock ◽  
Gary F Krause ◽  
Charlotte L Phillips

1998 ◽  
Vol 274 (1) ◽  
pp. L58-L65 ◽  
Author(s):  
Xiangde Liu ◽  
Takeshi Umino ◽  
Marty Cano ◽  
Ronald Ertl ◽  
Tom Veys ◽  
...  

Fibroblasts can contract collagen gels, a process thought to be related to tissue remodeling. Because epithelial cells are also involved in repair responses, we postulated that human bronchial epithelial cells (HBECs) could cause contraction of collagen gels. To evaluate this, HBECs were plated on the top of native type I collagen gels and were incubated for 48 h. After this, the gels were released and floated in LHC-9-RPMI 1640 for varying times, and gel size was measured with an image analyzer. HBECs caused a marked contraction of the gels within 24 h; the area was reduced by 88 ± 4% ( P < 0.01). The degree of gel contraction was dependent on cell density; 12,500 cells/cm2 resulted in maximal contraction, and half-maximal contraction occurred at 7,500 cells/cm2. Contraction varied inversely with the collagen concentration (91 ± 1% with 0.5 mg/ml collagen vs. 43 ± 5% with 1.5 mg/ml collagen). In contrast to fibroblasts that contract gels most efficiently when cast into the gel, HBEC-mediated contraction was significantly ( P < 0.01) more efficient when cells were on top of the gels rather than when cast into the gels. Anti-β1-integrin antibody blocked HBEC-mediated contraction by >50%, whereas anti-α2-, anti-α3-, anti-αv-, anti-αvβ5-, anti-β2-, or anti-β4-integrin antibody was without effect. The combination of anti-β1-integrin antibody and an anti-α-subfamily antibody completely blocked gel contraction induced by HBECs. In contrast, anti-cellular fibronectin antibody did not block HBEC-induced gel contraction, whereas it did block fibroblast-mediated gel contraction. In summary, human airway epithelial cells can contract type I collagen gels, a process that appears to require integrins but may not require fibronectin. This process may contribute to airway remodeling.


1991 ◽  
Vol 115 (3) ◽  
pp. 779-794 ◽  
Author(s):  
A L Calof ◽  
A D Lander

Regulation by the extracellular matrix (ECM) of migration, motility, and adhesion of olfactory neurons and their precursors was studied in vitro. Neuronal cells of the embryonic olfactory epithelium (OE), which undergo extensive migration in the central nervous system during normal development, were shown to be highly migratory in culture as well. Migration of OE neuronal cells was strongly dependent on substratum-bound ECM molecules, being specifically stimulated and guided by laminin (or the laminin-related molecule merosin) in preference to fibronectin, type I collagen, or type IV collagen. Motility of OE neuronal cells, examined by time-lapse video microscopy, was high on laminin-containing substrata, but negligible on fibronectin substrata. Quantitative assays of adhesion of OE neuronal cells to substrata treated with different ECM molecules demonstrated no correlation, either positive or negative, between the migratory preferences of cells and the strength of cell-substratum adhesion. Moreover, measurements of cell adhesion to substrata containing combinations of ECM proteins revealed that laminin and merosin are anti-adhesive for OE neuronal cells, i.e., cause these cells to adhere poorly to substrata that would otherwise be strongly adhesive. The evidence suggests that the anti-adhesive effect of laminin is not the result of interactions between laminin and other ECM molecules, but rather an effect of laminin on cells, which alters the way in which cells adhere. Consistent with this view, laminin was found to interfere strongly with the formation of focal contacts by OE neuronal cells.


Author(s):  
Spencer P. Lake ◽  
Sadie Doggett ◽  
Victor H. Barocas

Connective soft tissues have complex mechanical properties that are determined by their collagen fiber network and surrounding non-fibrillar material. The mechanical role of non-fibrillar material and the nature of its interaction with the collagen network remain poorly understood, in part because of the lack of a simple experimental model system to examine and quantify these properties. The development of a simple but representational experimental system will allow for greater insight into the interaction between fibers and the non-fibrillar matrix. Reconstituted Type I collagen gels are an attractive model tissue for exploring micro- and macroscale relationships between constituents (e.g., [1–2]), but standard collagen gels lack the non-fibrillar components (i.e., proteoglycan, minor collagens, etc.) present in native tissue. A recent study [3] added low quantities of agarose to collagen gels, which dramatically increased the shear storage modulus with minimal changes to the collagen fiber network. In this study, we suggest that collagen-agarose co-gels can serve as a model system to investigate the mechanical role of non-fibrillar ECM. Even though agarose is relatively compliant at low concentrations, and collagen fibers are very stiff in tension, we hypothesized that the presence of agarose in co-gels would have a pronounced effect on structural response and mechanical behavior in tensile loading. Therefore, the objective of this study was to examine the properties of collagen-agarose co-gels to understand better the nature of, and the relationships between, the collagen fiber network and non-fibrillar matrix of simplified tissue analogs.


Sign in / Sign up

Export Citation Format

Share Document