Development of macrociliary cells in Beroe. II. Formation of macrocilia

1988 ◽  
Vol 89 (1) ◽  
pp. 81-95 ◽  
Author(s):  
S.L. Tamm ◽  
S. Tamm

Two patterns of macrociliary growth occur in Beroe. Early differentiation described previously (Tamm & Tamm, 1988) leads to the first pattern of ciliogenesis. A tuft of 10–20 single cilia initially grows out from basal bodies that have migrated to the cell surface and are axially aligned. Ciliary membranes then begin to fuse along their length, except at the base, resulting in thicker groups of cilia on each cell. Progressive fusion of ciliary membranes, together with addition and elongation of new axonemes, finally results in mature macrocilia, 5 microns thick and 40 microns long, enclosed by a single membrane distally. The second pattern of ciliogenesis begins with the simultaneous appearance of several hundred ciliary buds on the apical surface. The short cilia possess individual membranes with bulbous tips, and are not axially aligned. Subsequent elongation is accompanied by progressive fusion of neighbouring ciliary membranes, except at the base, leading to flat-topped ‘stumps’ surrounded by a single membrane distally. Further elongation then proceeds asymmetrically within each stump. Axonemes on the aboral side of the macrocilium stop elongating, while those towards the oral side increase progressively in height, resulting in a slanted profile. Basal feet and central-pair microtubules are now uniformly aligned. Unequal elongation of axonemes on the oral and aboral sides of the macrocilium continues until the macrocilium resembles a lobster's claw, with a long slender shaft projecting from a broad base. Finally, the polarity of unequal growth reverses: the shorter axonemes on the aboral side elongate and almost catch up with the longer ones on the opposite side, resulting in a mature macrocilium of uniform diameter. The unusual membrane architecture of the macrocilium is thus a consequence of selective fusion of the distal regions of originally separate ciliary membranes. The polarized, asymmetrical growth of axonemes on the two sides of the macrocilium illustrates a remarkable control of microtubule elongation at the subcellular level.

1988 ◽  
Vol 89 (1) ◽  
pp. 67-80
Author(s):  
S. Tamm ◽  
S.L. Tamm

Differentiation of macrociliary cells on regenerating lips of the ctenophore Beroe was studied by transmission electron microscopy. In this study of early development, we found that basal bodies for macrocilia arise by an acentriolar pathway near the nucleus and Golgi apparatus, in close association with plaques of dense fibrogranular bodies. Procentrioles are often aligned side-by-side in double layers with the cartwheel ends facing outward toward the surrounding plaques of dense granules. Newly formed basal bodies then disband from groups and develop a long striated rootlet at one end. At the same time, an array of microfilaments arises in the basal cytoplasm. The microfilaments are arranged in parallel strands oriented toward the cell surface. The basal body-rootlet units are transported to the apical surface in close association with the assembling actin filament bundle. Microfilaments run parallel to and alongside the striated rootlets, to which they often appear attached. Basal body-rootlet units migrate at the heads of trails of microfilaments, as if they are pushed upwards by elongation of their attached actin filaments. Near the apical surface the actin bundle curves and runs below the cell membrane. Newly arrived basal body-rootlets tilt upwards out of the microfilament bundle to contact the cell membrane and initiate ciliogenesis. The basal bodies tilt parallel to the flat sides of the rootlets, and away from the direction in which the basal feet point. The actin bundle continues to enlarge during ciliogenesis. These results suggest that basal body migration may be driven by the directed assembly of attached actin filaments.


1989 ◽  
Vol 92 (1) ◽  
pp. 9-20 ◽  
Author(s):  
E. Boisvieux-Ulrich ◽  
M.C. Laine ◽  
D. Sandoz

When induced by in vivo oestrogen stimulation, ciliogenesis continues in culture in vitro of quail oviduct implants. Ultrastructure of ciliogenic cells was compared after culture for 24 or 48 h in the presence or absence of 10(−5) M-taxol. Taxol, which promotes polymerization and stabilization of microtubules, disturbed ciliogenesis, but formation of basal bodies was unaffected by the drug. Conversely, their migration towards the apical surface seemed to be slowed down or blocked and axonemal doublets polymerized onto the distal end of cytoplasmic basal bodies. They elongated and often constituted a more or less complete axoneme, extending between organelles in various orientations. These axonemes, often abnormal, were not surrounded by a membrane, with the exception of the transitional or neck region between the basal body and axoneme. The formation of membrane in this area resulted from the binding of some vesicles to the anchoring fibres of the basal body. They fused in various numbers, occasionally forming a ring, at the site of the transitional region, and exhibited the characteristics of the ciliary necklace. The association of basal bodies with vesicles or with the plasma membrane appeared to be a necessary signal for in situ polymerization of axonemal doublets. In addition, taxol induced polymerization of numerous microtubules in the cytoplasm, especially in the apical part of the cell and in the Golgi area. This network of microtubules may prevent basal body migration.


The macrocilia are 6 to 10 μm thick and 50 to 60 μm long. Each consists of 2000 to 3000 shafts, of the typical 9 + 2 pattern, which are arranged in a hexagonal array within a single membrane. The whole macrocilium beats like a single cilium, inward with reference to the mouth, and with antiplectic metachronal waves. Isolated macrocilia, when cut off, oscillate in one plane by a symmetrical bending movement at the middle. Cross-connexions lie between nearby fibrils of adjacent shafts in three different planes, and are apparently strong and permanent. The fibrils, each consisting of a pair of tubules, are numbered with these bridges as reference points. A system of tubules spreads between the basal bodies. Root structures are little developed. In bent cilia there is no buckling of shafts and the diameter of the shafts is the same on the concave as on the convex side. Therefore an active sliding mechanism between fibrils 2, 3, 4 (and between fibrils 6, 7, 8), rather than a contractile one, is postulated as the source of movement. This theory may apply to all cilia, and is an example of how this unique giant cilium may be utilized for the analysis of the function of the components of the 9 + 2 pattern during active movement.


2019 ◽  
Vol 218 (8) ◽  
pp. 2659-2676 ◽  
Author(s):  
Moonsup Lee ◽  
Yoo-Seok Hwang ◽  
Jaeho Yoon ◽  
Jian Sun ◽  
Adam Harned ◽  
...  

Cilia are critical for proper embryonic development and maintaining homeostasis. Although extensively studied, there are still significant gaps regarding the proteins involved in regulating ciliogenesis. Using the Xenopus laevis embryo, we show that Dishevelled (Dvl), a key Wnt signaling scaffold that is critical to proper ciliogenesis, interacts with Drg1 (developmentally regulated GTP-binding protein 1). The loss of Drg1 or disruption of the interaction with Dvl reduces the length and number of cilia and displays defects in basal body migration and docking to the apical surface of multiciliated cells (MCCs). Moreover, Drg1 morphants display abnormal rotational polarity of basal bodies and a decrease in apical actin and RhoA activity that can be attributed to disruption of the protein complex between Dvl and Daam1, as well as between Daam1 and RhoA. These results support the concept that the Drg1–Dvl interaction regulates apical actin polymerization and stability in MCCs. Thus, Drg1 is a newly identified partner of Dvl in regulating ciliogenesis.


Author(s):  
W. R. A. Muntz ◽  
S. L. Wentworth

The cirri of the digital tentacles ofNautilus pompiliusare covered by annular ridges, more pronounced on the oral (adhesive) than the aboral side. On the oral side the epithelium is thicker on the proximal and outer surfaces of the ridges than on their distal surfaces. Prominent electron-dense granules occur in the cells of the thick epithelium, but are absent from the thin epithelium and the epithelium of the aboral surface. These granules contain mucopolysaccharide and may be responsible for adhesion.The digital tentacles ofNautilusare used for attachment to, for example, prey, the substratum, or the partner's shell during mating. Their general structure and histology have been described by Owen (1832), Willey (1898), Barber & Wright (1969), Fukuda (1987) and Kier (1987). The mechanism of adhesion is still uncertain. Barber & Wright (1969) report epithelial cells of two types: pigmented cells containing pigment granules 0–5–1 µm in diameter, interspersed with a small number of mucus-producing cells which may help with the adhesive process.


2021 ◽  
Vol 7 (1) ◽  
pp. 39-42
Author(s):  
Jana Steger ◽  
Anne Zimmermann ◽  
Thomas Wittenberg ◽  
Dirk Wilhelm

Abstract The goal of our research work is the development of a novel endoscopic anastomosis device for the colon. One of the main challenges in this context is the application of forces at the endoscope tip to rejoin the two bowel endings. Thus, we focus on a magnetic two-part compression implant approach. The implant halves are detached from the applicator units by means of electromagnets. In this contribution we present the results of our experiments to determine the implant design with special focus on tissue compression forces and the resultant electromagnet dimensioning to estimate size requirements of the application/detachment system. To achieve the targeted compression forces derived from literature, we used cubic N52 magnetized neodymium magnets1 with a side length of 5 mm and mild steel screws. For these magnets, we evaluated a required electromagnetic repulsion force of 4.1 N. For the electromagnetic detachment system this led to the need for 166 windings for the coils on oral side, and 146 windings for the coils at the aboral side. Based on these requirements, a colonoscope diameter (~14 mm) increase of 10.6 mm on the oral side and of 12 mm on the aboral side due to the application device must be assumed. Nevertheless, this diameter still remains within the size range of other colonoscopic tools, such as e.g., circular staplers.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
B. Van Deurs ◽  
J. K. Koehler

The choroid plexus epithelium constitutes a blood-cerebrospinal fluid (CSF) barrier, and is involved in regulation of the special composition of the CSF. The epithelium is provided with an ouabain-sensitive Na/K-pump located at the apical surface, actively pumping ions into the CSF. The choroid plexus epithelium has been described as “leaky” with a low transepithelial resistance, and a passive transepithelial flux following a paracellular route (intercellular spaces and cell junctions) also takes place. The present report describes the structural basis for these “barrier” properties of the choroid plexus epithelium as revealed by freeze fracture.Choroid plexus from the lateral, third and fourth ventricles of rats were used. The tissue was fixed in glutaraldehyde and stored in 30% glycerol. Freezing was performed either in liquid nitrogen-cooled Freon 22, or directly in a mixture of liquid and solid nitrogen prepared in a special vacuum chamber. The latter method was always used, and considered necessary, when preparations of complementary (double) replicas were made.


Author(s):  
S.L. White ◽  
C.B. Jensen ◽  
D.D. Giera ◽  
D.A. Laska ◽  
M.N. Novilla ◽  
...  

In vitro exposure to LY237216 (9-Deoxo-11-deoxy-9,11-{imino[2-(2-methoxyethoxy)ethylidene]-oxy}-(9S)-erythromycin), a macrolide antibiotic, was found to induce cytoplasmic vacuolation in L6 skeletal muscle myoblast cultures (White, S.L., unpubl). The present study was done to determine, by autoradiographic quantitative analysis, the subcellular distribution of 3H-LY237216 in L6 cells.L6 cells (ATCC, CRL 1458) were cultured to confluency on polycarbonate membrane filters (Millipore Corp., Bedford, MA) in M-199 medium (GIBCO® Labs) with 10% fetal bovine serum. The cells were exposed from the apical surface for 1-hour to unlabelled-compound (0 μCi/ml) or 50 (μCi/ml of 3H-LY237216 at a compound concentration of 0.25 mg/ml. Following a rapid rinse in compound-free growth medium, the cells were slam-frozen against a liquid nitrogen cooled, polished copper block in a CF-100 cryofixation unit (LifeCell Corp., The Woodlands, TX). Specimens were dried in the MDD-C Molecular Distillation Drier (LifeCell Corp.), vapor osmicated and embedded in Spurrs low viscosity resin. Ultrathin sections collected on formvar coated stainless steel grids were counter-stained, then individually mounted on corks. A monolayer of Ilford L4 nuclear emulsion (Polysciences, Inc., Warrington, PA) was placed on the sections, utilizing a modified “loop method”. The emulsions were exposed for 7-weeks in a light-tight box at 4°C. Autoradiographs were developed in Microdol-X developer and examined on a Philips EM410LS transmission electron microscope. Quantitative analysis of compound localization employed the point and circle approach of Williams; incorporating the probability circle method of Salpeter and McHenry.


Sign in / Sign up

Export Citation Format

Share Document