scholarly journals Dictyostelium discoideum mutant synag 7 with altered G-protein-adenylate cyclase interaction

1988 ◽  
Vol 91 (2) ◽  
pp. 287-294
Author(s):  
B.E. Snaar-Jagalska ◽  
P.J. Van Haastert

Previous results have shown that Dictyostelium discoideum mutant synag 7 is defective in the regulation of adenylate cyclase by receptor agonists in vivo and by GTP gamma S in vitro; the guanine nucleotide activation of adenylate cyclase is restored by the high-speed supernatant from wild-type cells. Here we report that in synag 7 membranes: (1) cyclic AMP receptors had normal levels and were regulated by guanine nucleotides as in wild-type; (2) GTP binding and high-affinity GTPase were reduced but still stimulated by cyclic AMP; (3) the supernatant from wild-type cells restored GTP binding to membranes of this mutant, and partly restored high-affinity GTPase activity; (4) the supernatant of synag 7 was ineffective in these reconstitutions and did not influence GTP binding and GTPase activities in mutant or wild-type membranes. These results suggest that the defect in mutant synag 7 is located between G-protein and adenylate cyclase, and not between receptor and G-protein. A factor in the supernatant is absent in synag 7 and appears to be essential for normal GTP binding, GTPase and activation of adenylate cyclase. This soluble heat-labile factor may represent a new molecule required for receptor- and G-protein-mediated activation of adenylate cyclase.

2005 ◽  
Vol 25 (18) ◽  
pp. 8393-8400 ◽  
Author(s):  
Jaco C. Knol ◽  
Ruchira Engel ◽  
Mieke Blaauw ◽  
Antonie J. W. G. Visser ◽  
Peter J. M. van Haastert

ABSTRACT Phosducin proteins are known to inhibit G protein-mediated signaling by sequestering Gβγ subunits. However, Dictyostelium discoideum cells lacking the phosducin-like protein PhLP1 display defective rather than enhanced G protein signaling. Here we show that green fluorescent protein (GFP)-tagged Gβ (GFP-Gβ) and GFP-Gγ subunits exhibit drastically reduced steady-state levels and are absent from the plasma membrane in phlp1 − cells. Triton X-114 partitioning suggests that lipid attachment to GFP-Gγ occurs in wild-type cells but not in phlp1 − and gβ − cells. Moreover, Gβγ dimers could not be detected in vitro in coimmunoprecipitation assays with phlp1 − cell lysates. Accordingly, in vivo diffusion measurements using fluorescence correlation spectroscopy showed that while GFP-Gγ proteins are present in a complex in wild-type cells, they are free in phlp1 − and gβ − cells. Collectively, our data strongly suggest the absence of Gβγ dimer formation in Dictyostelium cells lacking PhLP1. We propose that PhLP1 serves as a cochaperone assisting the assembly of Gβ and Gγ into a functional Gβγ complex. Thus, phosducin family proteins may fulfill hitherto unsuspected biosynthetic functions.


1977 ◽  
Vol 55 (4) ◽  
pp. 934-942 ◽  
Author(s):  
Thomas W. Dolby ◽  
Lewis J. Kleinsmith

The experiments presented in this paper examine the mechanisms underlying the ability of cannabinoids to alter the in vivo levels of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) in mouse brain. It was found that changes in cyclic AMP levels are a composite result of direct actions of cannabinoids on adenylate cyclase (EC 4.6.1.1) activity and indirect actions involving the potentiation or inhibition of biogenic amine induced activity of adenylate cyclase. Furthermore, the long-term intraperitoneal administration of 1-(−)-Δ-tetrahydrocannabinol to mice produced a form of phosphodiesterase (EC 3.1.4.17) in the brain whose activity is not stimulated by Ca2+, although its basal specific activity is similar to that of control animals. In vitro, the presence of the cannabinoids caused no significant changes in activity of brain PDE at the concentrations tested. Some correlations are presented which imply that many of the observed behavioral and physiological actions of the cannabinoids in mammalian organisms may be mediated via cyclic AMP mechanisms.


2004 ◽  
Vol 164 (5) ◽  
pp. 701-715 ◽  
Author(s):  
Matthias Versele ◽  
Jeremy Thorner

Assembly at the mother–bud neck of a filamentous collar containing five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) is necessary for proper morphogenesis and cytokinesis. We show that Cdc10 and Cdc12 possess GTPase activity and appropriate mutations in conserved nucleotide-binding residues abrogate GTP binding and/or hydrolysis in vitro. In vivo, mutants unable to bind GTP prevent septin collar formation, whereas mutants that block GTP hydrolysis do not. GTP binding-defective Cdc10 and Cdc12 form soluble heteromeric complexes with other septins both in yeast and in bacteria; yet, unlike wild-type, mutant complexes do not bind GTP and do not assemble into filaments in vitro. Absence of a p21-activated protein kinase (Cla4) perturbs septin collar formation. This defect is greatly exacerbated when combined with GTP binding-defective septins; conversely, the septin collar assembly defect of such mutants is suppressed efficiently by CLA4 overexpression. Cla4 interacts directly with and phosphorylates certain septins in vitro and in vivo. Thus, septin collar formation may correspond to septin filament assembly, and requires both GTP binding and Cla4-mediated phosphorylation of septins.


1990 ◽  
Vol 10 (7) ◽  
pp. 3297-3306 ◽  
Author(s):  
P C Ma ◽  
C H Siu

The EDTA-resistant cell-cell adhesion expressed at the aggregation stage of Dictyostelium discoideum is mediated by a cell surface glycoprotein of Mr 80,000 (gp80). The expression of gp80 is developmentally regulated by cyclic AMP (cAMP). In vitro nuclear run-on experiments show that transcription of the gp80 gene is initiated soon after the onset of development. The basal level of gp80 transcription is significantly augmented by exogenous cAMP pulses. Interestingly, in analog studies, 2'-deoxy-cAMP, 8-bromo-cAMP, and N6-monobutyryl-cAMP are all capable of inducing a rapid accumulation of gp80 mRNA, suggesting the presence of a unique cAMP receptor that responds equally well to these analogs. To determine whether intracellular cAMP plays a role in the regulation of gp80 expression, caffeine was used to block cAMP-induced receptor-mediated adenylate cyclase activation. Expression of gp80 mRNA was blocked in caffeine-treated cells but could be substantially restored by treatment with exogenous cAMP pulses, suggesting that adenylate cyclase activation is not required. gp80 expression was also examined in the signal transduction mutants synag 7 and frigid A. In both mutants, gp80 was expressed at the basal level. Pulses of cAMP as well as 2'-deoxy-cAMP and N6-monobutyryl-cAMP were capable of restoring the normal level of gp80 expression in synag 7 cells. These results, taken together, indicate bimodal regulation of gp80 expression during development and the involvement of a novel cAMP receptor in the transmembrane signalling pathway that regulates gp80 gene expression.


1975 ◽  
Vol 229 (5) ◽  
pp. 1387-1392 ◽  
Author(s):  
GM Rodgers ◽  
JW Fisher ◽  
WJ George

The regional distribution of cyclic AMP in the kidney was determined following erythropoietic stimulation with hypoxia and cobalt. Following these stimuli, increases in renal cyclic AMP concentrations were restricted to the cortex. The basis for this localization in the case of cobalt treatment was found to reside in the stimulation of renal cortical adenylate cyclase activity in vitro by concentrations of cobalt similar to those found in vivo. The level of cobalt in the cortex after cobalt treatment was found to approach 500 mumol/kg of tissue, whereas no detectable levels of cobalt were found in the renal medulla. Additionally, other agents such as parathyroid hormone and lactic acid, that are known to lack stimulatory effects on medullary adenylate cyclase, were found to stimulate the cortical enzyme. This stimulation of renal cortical adenylate cyclase correlates with enhanced erythropoiesis as demonstrated by increased radiolabeled iron incorporation into erythrocytes. These results support previous reports which suggest that renal cortical cyclic AMP mediates erythropoietin production in response to erythropoietically active agents.


1987 ◽  
Vol 246 (2) ◽  
pp. 367-374 ◽  
Author(s):  
L Mvumbi ◽  
W Stalmans

1. Post-mitochondrial supernatants were prepared from the livers of 24 h-fasted rats. Upon centrifugation at high speed, the major part of the glycogen-synthase phosphatase activity sedimented with the microsomal fraction. However, two approaches showed that the enzyme was associated with residual glycogen rather than with vesicles of the endoplasmic reticulum. Indeed, the activity was entirely solubilized when the remaining glycogen was degraded either by glucagon treatment in vivo or by alpha-amylolysis in vitro. No evidence could be found for an association of glycogen-synthase phosphatase with the smooth endoplasmic reticulum, as isolated with the use of discontinuous sucrose gradients. 2. After solubilization by glucagon treatment in vivo, synthase phosphatase could be transferred to glycogen particles with very high affinity. Half-maximal binding occurred at a glycogen concentration of about 0.25 mg/ml, whereas glycogen synthase and phosphorylase required 1.5-2 mg/ml. 3. In gel-filtered extracts prepared from glycogen-depleted livers, the activation of glycogen synthase was not inhibited at all by phosphorylase alpha. The inhibition was restored when the liver homogenates were prepared in a glycogen-containing buffer. The effect was half-maximal at a glycogen concentration of about 0.25 mg/ml, and virtually complete at 1 mg/ml. These findings explain long-standing observations that in fasted animals the liver contains appreciable amounts of both synthase and phosphorylase in the active form.


1977 ◽  
Vol 75 (1) ◽  
pp. 119-126 ◽  
Author(s):  
SOREL SULIMOVICI ◽  
M. S. ROGINSKY

The adenylate cyclase activity and the concentration of testosterone in testicular mitochondria from immature rats were measured after administration of human chorionic gonadotrophin (HCG) or dibutyryl cyclic AMP in vivo or in vitro. Intratesticular injection of HCG produced an increase in adenylate cyclase activity which preceded the rise in the level of testosterone, whereas addition of the trophic hormone in vitro resulted in simultaneous increases. Administration of dibutyryl cyclic AMP in vivo enhanced the testosterone content of the mitochondria. However, the cyclic nucleotide added in vitro at concentrations up to 5 mmol/l had no effect. Cycloheximide injected intraperitoneally before the administration of HCG abolished the stimulatory effect of the trophic hormone on the level of testosterone in the mitochondria, whereas chloramphenicol had no effect. These results, although they confirm the role of cyclic AMP as an intermediate in the stimulatory effect of HCG on the concentration of testosterone in rat testis, do not support a role for mitochondrial adenylate cyclase in this action. A protein regulator(s) formed extramitochondrially appears to be involved in the stimulatory effect of gonadotrophins on steroidogenesis.


1978 ◽  
Vol 54 (5) ◽  
pp. 573-577 ◽  
Author(s):  
K. Kurokawa ◽  
E. Aznar ◽  
C. Descoeudres ◽  
Anicia Zulueta ◽  
S. G. Massry

1. The effects of adrenalectomy on the adenylate cyclase—adenosine 3′:5′-cyclic monophosphate (cyclic AMP) system of rat renal medulla were examined to evaluate the mechanism of the impaired water diuresis in glucocorticoid deficiency. 2. Concentrations of cyclic AMP in medullary tubules from adrenalectomized rats were significantly higher than in the tubules from control animals both in the presence and absence of antidiuretic hormone. 3. This abnormality was corrected by the treatment in vivo of the adrenalectomized rats with dexamethasone, but addition of this drug to the incubation medium did not abolish the differences in cyclic AMP between tubules from adrenalectomized and normal rats. 4. The activity of adenylate cyclase or cyclic AMP phosphodiesterase in vitro was not affected by adrenalectomy. 5. In glucocorticoid deficiency, the concentration of cyclic AMP in medullary tubules is increased both with and without antidiuretic hormone. This abnormality may render medullary tubules more permeable to water and may underlie the impaired water diuresis in glucocorticoid deficiency.


2013 ◽  
Vol 27 (2) ◽  
pp. 296-314 ◽  
Author(s):  
Diane Gesty-Palmer ◽  
Ling Yuan ◽  
Bronwen Martin ◽  
William H. Wood ◽  
Mi-Hye Lee ◽  
...  

Abstract Biased G protein-coupled receptor agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, d-Trp12,Tyr34-bPTH(7–34) [bPTH(7–34)], a biased agonist for the type 1 PTH receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both bPTH(7–34) and the conventional agonist hPTH(1–34) stimulate anabolic bone formation. To understand how two PTH receptor ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 wk with vehicle, bPTH(7–34) or hPTH(1–34). Treatment of wild-type mice with bPTH(7–34) primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival, and migration. These responses were absent in β-arrestin2-null mice, identifying them as downstream targets of β-arrestin2-mediated signaling. In contrast, hPTH(1–34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. hPTH(1–34) actions were less dependent on β-arrestin2, as might be expected of a ligand capable of G protein activation. In vitro, bPTH(7–34) slowed the rate of preosteoblast proliferation, enhanced osteoblast survival when exposed to an apoptotic stimulus, and stimulated cell migration in wild-type, but not β-arrestin2-null, calvarial osteoblasts. These results suggest that bPTH(7–34) and hPTH(1–34) affect bone mass in vivo through predominantly separate genomic mechanisms created by largely distinct receptor-signaling networks and demonstrate that functional selectivity can be exploited to change the quality of G protein-coupled receptor efficacy.


Science ◽  
2013 ◽  
Vol 341 (6141) ◽  
pp. 88-91 ◽  
Author(s):  
Kipp Weiskopf ◽  
Aaron M. Ring ◽  
Chia Chi M. Ho ◽  
Jens-Peter Volkmer ◽  
Aron M. Levin ◽  
...  

CD47 is an antiphagocytic signal that cancer cells employ to inhibit macrophage-mediated destruction. Here, we modified the binding domain of human SIRPα, the receptor for CD47, for use as a CD47 antagonist. We engineered high-affinity SIRPα variants with about a 50,000-fold increased affinity for human CD47 relative to wild-type SIRPα. As high-affinity SIRPα monomers, they potently antagonized CD47 on cancer cells but did not induce macrophage phagocytosis on their own. Instead, they exhibited remarkable synergy with all tumor-specific monoclonal antibodies tested by increasing phagocytosis in vitro and enhancing antitumor responses in vivo. This “one-two punch” directs immune responses against tumor cells while lowering the threshold for macrophage activation, thereby providing a universal method for augmenting the efficacy of therapeutic anticancer antibodies.


Sign in / Sign up

Export Citation Format

Share Document