Comparative study on the antioxidant activity of peptides from pearl oyster (Pinctada martensii) mantle type V collagen and tilapia (Oreochromis niloticus) scale type I collagen

2017 ◽  
Vol 16 (6) ◽  
pp. 1175-1182 ◽  
Author(s):  
Guanghua Xia ◽  
Xueying Zhang ◽  
Zhenghua Dong ◽  
Xuanri Shen
Author(s):  
Arthur J. Wasserman ◽  
Kathy C. Kloos ◽  
David E. Birk

Type I collagen is the predominant collagen in the cornea with type V collagen being a quantitatively minor component. However, the content of type V collagen (10-20%) in the cornea is high when compared to other tissues containing predominantly type I collagen. The corneal stroma has a homogeneous distribution of these two collagens, however, immunochemical localization of type V collagen requires the disruption of type I collagen structure. This indicates that these collagens may be arranged as heterpolymeric fibrils. This arrangement may be responsible for the control of fibril diameter necessary for corneal transparency. The purpose of this work is to study the in vitro assembly of collagen type V and to determine whether the interactions of these collagens influence fibril morphology.


1982 ◽  
Vol 92 (2) ◽  
pp. 343-349 ◽  
Author(s):  
A Martinez-Hernandez ◽  
S Gay ◽  
E J Miller

Antibodies specific for the alpha 1 (V) chain and native collagen molecules containing the alpha 1 (V) chain have been used in electron immunohistochemical studies of rat kidney to determine the ultrastructural distribution of this class of collagen molecules. In addition, antibodies against type I collagen and whole basement membrane were used as markers for interstitial collagen and authentic basement membranes. Our results indicate that type V collagen is present in the renal interstitium in different forms: in close apposition to interstitial collagen fibers; in the stromal aspect of vascular basement membranes; and as particulate material not bound to other structures. On the basis of these findings, we postulate a binding or connecting function for this collagen type.


1990 ◽  
Vol 95 (4) ◽  
pp. 649-657 ◽  
Author(s):  
D.E. Birk ◽  
J.M. Fitch ◽  
J.P. Babiarz ◽  
K.J. Doane ◽  
T.F. Linsenmayer

The small-diameter fibrils of the chick corneal stroma are heterotypic, composed of both collagen types I and V. This tissue has a high concentration of type V collagen relative to other type I-containing tissues with larger-diameter fibrils, suggesting that heterotypic interactions may have a regulatory role in the control of fibril diameter. The interactions of collagen types I and V were studied using an in vitro self-assembly system. Collagens were purified from lathyritic chick embryos in the presence of protease inhibitors. The type V collagen preparations contained higher molecular weight forms of the alpha 1(V) and alpha 2(V) chains constituting 60–70% of the total. Rotary-shadow electron micrographs showed a persistence of a small, pepsin-sensitive terminal region in an amount consistent with that seen by electrophoresis. In vitro, this purified type V collagen formed thin fibrils with no apparent periodicity, while type I collagen fibrils had a broad distribution of large diameters. However, when type I collagen was mixed with increasing amounts of type V collagen a progressive and significant decrease in both the mean fibril diameter and the variance was observed for D periodic fibrils. The amino-terminal domain of the type V collagen molecule was required for this regulatory effect and in its absence little diameter reducing activity was observed. Electron microscopy using collagen type-specific monoclonal antibodies demonstrated that the fibrils formed were heterotypic, containing both collagen types I and V. These data indicate that the interaction of type V with type I collagen is one mechanism modulating fibril diameter and is at least partially responsible for the regulation of collagen fibril formation.


1989 ◽  
Vol 94 (2) ◽  
pp. 371-379
Author(s):  
J.S. McLaughlin ◽  
T.F. Linsenmayer ◽  
D.E. Birk

Chick embryo corneal fibroblasts were grown in culture to study the processes whereby fibroblasts regulate the deposition and organization of the collagenous, secondary stroma. The effects of an existing type I collagen substratum, cell density, and serum concentration on type V collagen synthesis were investigated. Type V collagen represented approximately 20% of the total fibrillar collagen synthesized, regardless of whether the cells were subcultured, grown on untreated or collagen-coated plastic, grown under confluent or subconfluent conditions, or grown in the presence of low (0.1%) or high (10.0%) serum concentrations. The synthesis of type V collagen remained constant at 20% of the total collagen when cells were grown in 1.0% serum, even though total collagen synthesis increased nearly twofold when compared to total synthesis in 0.1% or 10.0% serum. Immunocytochemistry with anti-collagen, type-specific monoclonal antibodies revealed a homogeneous population of cells synthesizing types I and V collagen. The fibrils deposited by cells grown in a three-dimensional collagen matrix contained a helical epitope on the type V molecule that was inaccessible unless the fibrillar structure was disrupted, mimicking the situation in situ. The production in vitro of heterotypic fibrils, with a constant I/V ratio and molecular packing mimicking the natural stroma, offers opportunities for studying in more detail this important process, which is essential for optical transparency.


1982 ◽  
Vol 105 (3) ◽  
pp. 1208-1214 ◽  
Author(s):  
Sadako Yamagata ◽  
Mayumi Miwa ◽  
Kyoko Tanaka ◽  
Tatsuya Yamagata

2021 ◽  
Author(s):  
Keren Machol ◽  
Urszula Polak ◽  
Monika Weisz-Hubshman ◽  
I-Wen Song ◽  
Shan Chen ◽  
...  

Abstract Type V collagen is a regulatory fibrillar collagen essential for type I collagen fibril nucleation and organization and its deficiency leads to structurally abnormal extracellular matrix. Haploinsufficiency of the Col5a1 gene encoding α(1) chain of type V collagen is the primary cause of classic Ehlers Danlos Syndrome (EDS). The mechanisms by which this initial insult leads to the spectrum of clinical presentation is not fully understood. Using transcriptome analysis of skin and Achilles tendons from Col5a1 haploinsufficient (Col5a1+/−) mice, we recognized molecular alterations associated with the tissue phenotypes. We identified dysregulation of extracellular matrix components including thrombospondin-1, lysyl oxidase, and lumican in the skin of Col5a1+/− mice when compared to control. We also identified upregulation of Tgf-β in serum and increased expression of pSmad2 in skin from Col5a1+/− mice suggesting Tgf-β dysregulation as a contributor for abnormal wound healing and atrophic scaring seen in classic EDS. Together, these findings support altered matrix to cell signaling as a component of the pathogenesis of the tissue phenotype in classic EDS and point out potential downstream signaling pathways that may be targeted for treatment of the disease.


1999 ◽  
Vol 111 (1) ◽  
pp. 171-177
Author(s):  
Toshihiko Hayashi ◽  
Kazunori Mizuno ◽  
Motohiro Hirose ◽  
Koichi Nakazato ◽  
Eijiro Adachi ◽  
...  

1991 ◽  
Vol 100 (1) ◽  
pp. 179-185
Author(s):  
C. Luparello ◽  
P. Sheterline ◽  
I. Pucci-Minafra ◽  
S. Minafra

Ductal infiltrating carcinoma (d.i.c.) of human breast is a highly invasive neoplasm characterized by enhanced deposition of collagen. Paradoxically, enhanced collagen deposition is not correlated with inhibition of the migration of tumour cells into the host tissue. d.i.c. is characterized by the reappearance of ‘embryonic’ type I-trimer collagen and an increase in type V collagen content in the matrix. The effects of these two collagen types were compared with type I collagen as culture substrata on the spreading pattern, cytoskeletal organization and motile behaviour of 8701-BC breast carcinoma cells using rhodamine-phalloidin staining, a DNAase I-competition assay, scanning electron microscopy and time-lapse video-microscopy. Cells grown on type I collagen were stationary, showing a well-spread morphology and an extensive stress fibre pattern. Cells grown on type V collagen were also stationary, but displayed a poorly spread and elongated morphology. In contrast, cells grown on trimer collagen were motile and displayed a compact morphology and a reduced content of stress fibres. Both single-cell and group motility were detectable on trimer collagen substratum. These data are consistent with the existence of two opposite local signals, type I-trimer and type V collagens, which may confer a more or a less metastatic phenotype on breast carcinoma cells. Moreover, the synthesis of trimer collagen in d.i.c. is conceivably instrumental in providing new stromal pathways permitting tumour cells to infiltrate the host tissue.


Sign in / Sign up

Export Citation Format

Share Document