scholarly journals Intraspecific variation in the thermal plasticity of mitochondria in killifish

2011 ◽  
Vol 214 (21) ◽  
pp. 3639-3648 ◽  
Author(s):  
R. S. Dhillon ◽  
P. M. Schulte
Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 884
Author(s):  
Shufen Chen ◽  
Wataru Ishizuka ◽  
Toshihiko Hara ◽  
Susumu Goto

Research Highlights: The complete chloroplast genome for eight individuals of Japanese larch, including from the isolated population at the northern limit of the range (Manokami larch), revealed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed in Japanese larch. We detected intraspecific variation for possible candidate cpDNA markers in Japanese larch. Background and Objectives: The natural distribution of Japanese larch is limited to the mountainous range in the central part of Honshu Island, Japan, with an isolated northern limit population (Manokami larch). In this study, we determined the phylogenetic position of Manokami larch within Japanese larch, characterized the chloroplast genome of Japanese larch, detected intraspecific variation, and determined candidate cpDNA markers. Materials and Methods: The complete genome sequence was determined for eight individuals, including Manokami larch, in this study. The genetic position of the northern limit population was evaluated using phylogenetic analysis. The chloroplast genome of Japanese larch was characterized by comparison with eight individuals. Furthermore, intraspecific variations were extracted to find candidate cpDNA markers. Results: The phylogenetic tree showed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed, based on the complete chloroplast genome, with a bootstrap value of 100%. The value of nucleotide diversity (π) was calculated at 0.00004, based on SNP sites for Japanese larch, suggesting that sequences had low variation. However, we found three hyper-polymorphic regions within the cpDNA. Finally, we detected 31 intraspecific variations, including 19 single nucleotide polymorphisms, 8 simple sequence repeats, and 4 insertions or deletions. Conclusions: Using a distant genotype in a northern limit population (Manokami larch), we detected sufficient intraspecific variation for the possible candidates of cpDNA markers in Japanese larch.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Jakob ◽  
Kseniya P. Vereshchagina ◽  
Anette Tillmann ◽  
Lorena Rivarola-Duarte ◽  
Denis V. Axenov-Gribanov ◽  
...  

AbstractLake Baikal is inhabited by more than 300 endemic amphipod species, which are narrowly adapted to certain thermal niches due to the high interspecific competition. In contrast, the surrounding freshwater fauna is commonly represented by species with large-scale distribution and high phenotypic thermal plasticity. Here, we investigated the thermal plasticity of the energy metabolism in two closely-related endemic amphipod species from Lake Baikal (Eulimnogammarus verrucosus; stenothermal and Eulimnogammarus cyaneus; eurythermal) and the ubiquitous Holarctic amphipod Gammarus lacustris (eurythermal) by exposure to a summer warming scenario (6–23.6 °C; 0.8 °C d−1). In concert with routine metabolic rates, activities of key metabolic enzymes increased strongly with temperature up to 15 °C in E. verrucosus, whereupon they leveled off (except for lactate dehydrogenase). In contrast, exponential increases were seen in E. cyaneus and G. lacustris throughout the thermal trial (Q10-values: 1.6–3.7). Cytochrome-c-oxidase, lactate dehydrogenase, and 3-hydroxyacyl-CoA dehydrogenase activities were found to be higher in G. lacustris than in E. cyaneus, especially at the highest experimental temperature (23.6 °C). Decreasing gene expression levels revealed some thermal compensation in E. cyaneus but not in G. lacustris. In all species, shifts in enzyme activities favored glycolytic energy generation in the warmth. The congruent temperature-dependencies of enzyme activities and routine metabolism in E. verrucosus indicate a strong feedback-regulation of enzymatic activities by whole organism responses. The species-specific thermal reaction norms reflect the different ecological niches, including the spatial distribution, distinct thermal behavior such as temperature-dependent migration, movement activity, and mating season.


2021 ◽  
Vol 763 ◽  
pp. 144591
Author(s):  
Run Liu ◽  
Yueting Pan ◽  
You Fang ◽  
Lu Pang ◽  
Jiachen Shen ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michel Schmidt ◽  
Yu Liu ◽  
Xianguang Hou ◽  
Joachim T. Haug ◽  
Carolin Haug ◽  
...  

Abstract Background The Chengjiang biota from southwest China (518-million-years old, early Cambrian) has yielded nearly 300 species, of which more than 80 species represent early chelicerates, crustaceans and relatives. The application of µCT-techniques combined with 3D software (e.g., Drishti), has been shown to be a powerful tool in revealing and analyzing 3D features of the Chengjiang euarthropods. In order to address several open questions that remained from previous studies on the morphology of the xandarellid euarthropod Sinoburius lunaris, we reinvestigated the µCT data with Amira to obtain a different approach of visualization and to generate new volume-rendered models. Furthermore, we used Blender to design 3D models showing aspects of intraspecific variation. Results New findings are: (1) antennulae consist of additional proximal articles that have not been detected before; (2) compared to other appendages, the second post-antennular appendage has a unique shape, and its endopod is comprised of only five articles (instead of seven); (3) the pygidium bears four pairs of appendages which are observed in all specimens. On the other hand, differences between specimens also have been detected. These include the presence/absence of diplotergites resulting in different numbers of post-antennular appendages and tergites and different distances between the tip of the hypostome and the anterior margin of the head shield. Conclusions Those new observations reveal intraspecific variation among Chengjiang euarthropods not observed before and encourage considerations about possible sexual dimorphic pairs or ontogenetic stages. Sinoburius lunaris is a variable species with respect to its morphological characters, cautioning that taxon-specific variabilities need to be considered when exploring new species.


2021 ◽  
Vol 155 ◽  
pp. 102982
Author(s):  
Marta Pina ◽  
Yasuhiro Kikuchi ◽  
Masato Nakatsukasa ◽  
Yoshihiko Nakano ◽  
Yutaka Kunimatsu ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


Sign in / Sign up

Export Citation Format

Share Document