Power output from a flight muscle of the bumblebee Bombus terrestris. III. Power during simulated flight

1997 ◽  
Vol 200 (8) ◽  
pp. 1241-1246 ◽  
Author(s):  
R Josephson

1. The work loop approach was used to measure mechanical power output from an asynchronous flight muscle, the dorso-ventral muscle of the bumblebee Bombus terrestris. Measurements were made at the optimum muscle length for work output at 30 °C and at a muscle temperature (40 °C) and oscillatory frequency (141­173 Hz, depending on the size of the animal) characteristic of free flight. Oscillatory strain amplitude was adjusted to maximize power output. 2. There was much preparation-to-preparation variability in power output. Power output in the muscles with the highest values was slightly greater than 100 W kg-1. It is argued that there are many experimental factors which might reduce measured power output below that in the living bumblebee, and no obvious factors which might lead to overestimates of muscle power. The conclusion is that flight muscle in the intact bumblebee can produce at least 100 W kg-1.

2000 ◽  
Vol 203 (17) ◽  
pp. 2667-2689 ◽  
Author(s):  
R.K. Josephson ◽  
J.G. Malamud ◽  
D.R. Stokes

The basalar muscle of the beetle Cotinus mutabilis is a large, fibrillar flight muscle composed of approximately 90 fibers. The paired basalars together make up approximately one-third of the mass of the power muscles of flight. Changes in twitch force with changing stimulus intensity indicated that a basalar muscle is innervated by at least five excitatory axons and at least one inhibitory axon. The muscle is an asynchronous muscle; during normal oscillatory operation there is not a 1:1 relationship between muscle action potentials and contractions. During tethered flight, the wing-stroke frequency was approximately 80 Hz, and the action potential frequency in individual motor units was approximately 20 Hz. As in other asynchronous muscles that have been examined, the basalar is characterized by high passive tension, low tetanic force and long twitch duration. Mechanical power output from the basalar muscle during imposed, sinusoidal strain was measured by the work-loop technique. Work output varied with strain amplitude, strain frequency, the muscle length upon which the strain was superimposed, muscle temperature and stimulation frequency. When other variables were at optimal values, the optimal strain for work per cycle was approximately 5%, the optimal frequency for work per cycle approximately 50 Hz and the optimal frequency for mechanical power output 60–80 Hz. Optimal strain decreased with increasing cycle frequency and increased with muscle temperature. The curve relating work output and strain was narrow. At frequencies approximating those of flight, the width of the work versus strain curve, measured at half-maximal work, was 5% of the resting muscle length. The optimal muscle length for work output was shorter than that at which twitch and tetanic tension were maximal. Optimal muscle length decreased with increasing strain. The curve relating work output and muscle length, like that for work versus strain, was narrow, with a half-width of approximately 3 % at the normal flight frequency. Increasing the frequency with which the muscle was stimulated increased power output up to a plateau, reached at approximately 100 Hz stimulation frequency (at 35 degrees C). The low lift generated by animals during tethered flight is consistent with the low frequency of muscle action potentials in motor units of the wing muscles. The optimal oscillatory frequency for work per cycle increased with muscle temperature over the temperature range tested (25–40 degrees C). When cycle frequency was held constant, the work per cycle rose to an optimum with increasing temperature and then declined. We propose that there is a temperature optimum for work output because increasing temperature increases the shortening velocity of the muscle, which increases the rate of positive work output during shortening, but also decreases the durations of the stretch activation and shortening deactivation that underlie positive work output, the effect of temperature on shortening velocity being dominant at lower temperatures and the effect of temperature on the time course of activation and deactivation being dominant at higher temperatures. The average wing-stroke frequency during free flight was 94 Hz, and the thoracic temperature was 35 degrees C. The mechanical power output at the measured values of wing-stroke frequency and thoracic temperature during flight, and at optimal muscle length and strain, averaged 127 W kg(−1)muscle, with a maximum value of 200 W kg(−1). The power output from this asynchronous flight muscle was approximately twice that measured with similar techniques from synchronous flight muscle of insects, supporting the hypothesis that asynchronous operation has been favored by evolution in flight systems of different insect groups because it allows greater power output at the high contraction frequencies of flight.


1988 ◽  
Vol 140 (1) ◽  
pp. 287-299 ◽  
Author(s):  
DARRELL R. STOKES ◽  
ROBERT K. JOSEPHSON

The mechanical power output was measured from scaphognathite (SG = gill bailer) muscle L2B of the crab Carcinus maenas (L.). The work was determined from the area of the loop formed by plotting muscle length against force when the muscle was subjected to sinusoidal length change (strain) and phasic stimulation in the length cycle. The stimulation pattern (10 stimuli per burst, burst length = 20% of cycle length) mimicked that which has been recorded from muscle L2B in intact animals. Work output was measured at cycle frequencies ranging from 0.5 to 5 Hz. The work output at optimum strain and stimulus phase increased with increasing cycle frequency to a maximum at 2–3 Hz and declined thereafter. The maximum work per cycle was 2.7 J kg−1 (15 °C). The power output reached a maximum (8.8 W kg−1) at 4 Hz. Both optimum strain and optimum stimulus phase were relatively constant over the range of burst frequencies examined. Based on the fraction of the total SG musculature represented by muscle L2B (18%) and literature values for the oxygen consumption associated with ventilation in C. maenas and for the hydraulic power output from an SG, we estimate that at a beat frequency of 2 Hz the SG muscle is about 10% efficient in converting metabolic energy to muscle power, and about 19% efficient in converting muscle power to hydraulic power.


1997 ◽  
Vol 200 (8) ◽  
pp. 1227-1239 ◽  
Author(s):  
R Josephson

1. Length-tension relationships and work output were investigated in the intact, dorso-ventral flight muscle of the bumblebee Bombus terrestris. The muscle is an asynchronous muscle. Like other asynchronous flight muscles, it has high resting stiffness and produces relatively low active force in response to tetanic stimulation. 2. The muscle shows shortening deactivation and stretch activation, properties that result in delayed force changes in response to step changes in length, a phase lag between force and length during imposed sinusoidal strain and, under appropriate conditions, positive work output during oscillatory length change. 3. Work loops were used to quantify work output by the muscle during imposed sinusoidal oscillation. The curves relating net work per cycle with muscle length, oscillatory strain and oscillatory frequency were all roughly bell-shaped. The work-length curve was narrow. The optimum strain for net work per cycle was approximately 3 %, which is probably somewhat greater than the strain experienced by the muscle in an intact, flying bumblebee. The optimum frequency for net work output per cycle was 63 Hz (30 °C). The optimum frequency for power output was 73 Hz, which agrees well with the normal wing stroke frequency if allowance is made for the elevated temperature (approximately 40 °C) in the thorax of a flying bumblebee. The optimal strain for work output was not strongly dependent on oscillation frequency. 4. Resilience (that is the work output during shortening/work input during lengthening) for unstimulated muscle and dynamic stiffness (=stress/strain) for both stimulated and unstimulated muscles were determined using the strain (3 %) and oscillation frequency (64 Hz) which maximized work output in stimulated muscles. Unstimulated muscle is a good energy storage device. Its resilience increased with increasing muscle length (and increasing resting force) to reach values of over 90 %. The dynamic stiffness of both stimulated and unstimulated muscles increased with muscle length, but the increase was relatively greater in unstimulated muscle, and at long muscle lengths the stiffness of unstimulated muscle exceeded that of stimulated muscle. Effectively, dynamic stiffness is reduced by stimulation! This is taken as indicating that part of the stiffness in an unstimulated muscle reflects structures, possibly attached cross bridges, whose properties change upon stimulation.


2011 ◽  
Vol 366 (1570) ◽  
pp. 1488-1495 ◽  
Author(s):  
Thomas J. Roberts ◽  
Emily M. Abbott ◽  
Emanuel Azizi

Muscles power movement, yet the conceptual link between muscle performance and locomotor performance is poorly developed. Frog jumping provides an ideal system to probe the relationship between muscle capacity and locomotor performance, because a jump is a single discrete event and mechanical power output is a critical determinant of jump distance. We tested the hypothesis that interspecific variation in jump performance could be explained by variability in available muscle power. We used force plate ergometry to measure power produced during jumping in Cuban tree frogs ( Osteopilus septentrionalis ), leopard frogs ( Rana pipiens ) and cane toads ( Bufo marinus ). We also measured peak isotonic power output in isolated plantaris muscles for each species. As expected, jump performance varied widely. Osteopilus septentrionalis developed peak power outputs of 1047.0 ± 119.7 W kg −1 hindlimb muscle mass, about five times that of B. marinus (198.5 ± 54.5 W kg −1 ). Values for R. pipiens were intermediate (543.9 ± 96.2 W kg −1 ). These differences in jump power were not matched by differences in available muscle power, which were 312.7 ± 28.9, 321.8 ± 48.5 and 262.8 ± 23.2 W kg −1 muscle mass for O. septentrionalis , R. pipiens and B. marinus , respectively. The lack of correlation between available muscle power and jump power suggests that non-muscular mechanisms (e.g. elastic energy storage) can obscure the link between muscle mechanical performance and locomotor performance.


1997 ◽  
Vol 200 (3) ◽  
pp. 583-600 ◽  
Author(s):  
JM Wakeling ◽  
CP Ellington

A mean lift coefficient quasi-steady analysis has been applied to the free flight of the dragonfly Sympetrum sanguineum and the damselfly Calopteryx splendens. The analysis accommodated the yaw and accelerations involved in free flight. For any given velocity or resultant aerodynamic force (thrust), the damselfly mean lift coefficient was higher than that for the dragonfly because of its clap and fling. For both species, the maximum mean lift coefficient L was higher than the steady CL,max. Both species aligned their strokes planes to be nearly normal to the thrust, a strategy that reduces the L required for flight and which is different from the previously published hovering and slow dragonfly flights with stroke planes steeply inclined to the horizontal. Owing to the relatively low costs of accelerating the wing, the aerodynamic power required for flight represents the mechanical power output from the muscles. The maximum muscle mass-specific power was estimated at 156 and 166 W kg-1 for S. sanguineum and C. splendens, respectively. Measurements of heat production immediately after flight resulted in mechanical efficiency estimates of 13 % and 9 % for S. sanguineum and C. splendens muscles, respectively.


1998 ◽  
Vol 201 (10) ◽  
pp. 1505-1526 ◽  
Author(s):  
J M Wakeling ◽  
I A Johnston

Fast-starts associated with escape responses were filmed at the median habitat temperatures of six teleost fish: Notothenia coriiceps and Notothenia rossii (Antarctica), Myoxocephalus scorpius (North Sea), Scorpaena notata and Serranus cabrilla (Mediterranean) and Paracirrhites forsteri (Indo-West-Pacific Ocean). Methods are presented for estimating the spine positions for silhouettes of swimming fish. These methods were used to validate techniques for calculating kinematics and muscle dynamics during fast-starts. The starts from all species show common patterns, with waves of body curvature travelling from head to tail and increasing in amplitude. Cross-validation with sonomicrometry studies allowed gearing ratios between the red and white muscle to be calculated. Gearing ratios must decrease towards the tail with a corresponding change in muscle geometry, resulting in similar white muscle fibre strains in all the myotomes during the start. A work-loop technique was used to measure mean muscle power output at similar strain and shortening durations to those found in vivo. The fast Sc. notata myotomal fibres produced a mean muscle-mass-specific power of 142.7 W kg-1 at 20 degrees C. Velocity, acceleration and hydrodynamic power output increased both with the travelling rate of the wave of body curvature and with the habitat temperature. At all temperatures, the predicted mean muscle-mass-specific power outputs, as calculated from swimming sequences, were similar to the muscle power outputs measured from work-loop experiments.


1994 ◽  
Vol 187 (1) ◽  
pp. 295-303 ◽  
Author(s):  
R Josephson ◽  
D Stokes

The mechanical power output during oscillatory contraction was determined for the flagellum abductor muscle of the crab Carcinus maenas using the work loop technique. Measurements were made at 10 Hz, which is the normal operating frequency of the muscle. The temperature was 15 °C. Increasing the number of stimuli per cycle (given at an interstimulus interval of 3.3 ms) decreased the number of cycles required to reach a work plateau and increased the work per cycle at the plateau to a maximum at 4­5 stimuli per cycle. The maximum mechanical power output was 9.7 W kg-1 muscle (about 26 W kg-1 myofibril). The optimum strain for work output (5.7 %) was close to the estimated muscle strain in vivo (5.2 %).


2001 ◽  
Vol 204 (23) ◽  
pp. 4125-4139 ◽  
Author(s):  
Robert K. Josephson ◽  
Jean G. Malamud ◽  
Darrell R. Stokes

SUMMARYMechanical power output and metabolic power input were measured from an asynchronous flight muscle, the basalar muscle of the beetle Cotinus mutabilis. Mechanical power output was determined using the work loop technique and metabolic power input by monitoring CO2 production or both CO2 production and O2 consumption. At 35°C, and with conditions that maximized power output (60 Hz sinusoidal strain, optimal muscle length and strain amplitude, 60 Hz stimulation frequency), the peak mechanical power output during a 10 s burst was approximately 140 W kg–1, the respiratory coefficient 0.83 and the muscle efficiency 14–16 %. The stimulus intensity used was the minimal required to achieve a maximal isometric tetanus. Increasing or decreasing the stimulus intensity from this level changed mechanical power output but not efficiency, indicating that the efficiency measurements were not contaminated by excitation of muscles adjacent to that from which the mechanical recordings were made. The CO2 produced during an isometric tetanus was approximately half that during a bout of similar stimulation but with imposed sinusoidal strain and work output, suggesting that up to 50 % of the energy input may go to muscle activation costs. Reducing the stimulus frequency to 30 Hz from its usual value of 60 Hz reduced mechanical power output but had no significant effect on efficiency. Increasing the frequency of the sinusoidal strain from 60 to 90 Hz reduced power output but not CO2 consumption; hence, there was a decline in efficiency. The respiratory coefficient was the same for 10 s and 30 s bursts of activity, suggesting that there was no major change in the fuel used over this time range.The mass-specific mechanical power output and the efficiency of the beetle muscle were each 2–3 times greater than values measured in previous studies, using similar techniques, from locust flight muscles, which are synchronous muscles. These results support the hypothesis that asynchronous flight muscles have evolved in several major insect taxa because they can provide greater power output and are more efficient than are synchronous muscles for operation at the high frequencies of insect flight.


The lift and power requirements for hovering insect flight are estimated by combining the morphological and kinematic data from papers II and III with the aerodynamic analyses of papers IV and V. The lift calculations are used to evaluate the importance in hovering of two distinct types of aerodynamic mechanisms: (i) the usual quasi-steady mechanism, where the circulation for lift is primarily determined by translation of the wing, and (ii) rotational mechanisms, where the circulation is largely governed by wing rotation at either end of the wingbeat. Power estimates are compared with the available measurements of metabolic rate during hovering to investigate the role of elastic energy storage, the maximum mechanical power output of the flight muscles, and the muscle efficiency. The quasi-steady mechanism proves inadequate for the lift requirements of hover-flies using an inclined stroke plane, and for a ladybird beetle and a crane-fly hovering with a horizontal stroke plane. Observed angles of attack rule out lift enhancement by unsteady modifications to the quasi-steady mechanism, such as delayed stall, but the rotational lift mechanisms proposed in paper IV seem consistent with the kinematics. The rotational mechanisms rely on concentrated vortex shedding from the leading edge during rotation, with attachment of that vorticity as a leading edge separation bubble during the subsequent half-stroke. Strong leading edge vortex shedding should result from delayed pronation for the hover-fly, a near fling and partial fling for the ladybird, and profile flexion for the crane-fly (the flex mechanism). The kinematics for the other insects hovering with a horizontal stroke plane are basically the same as for the anomalous crane-fly, and the quasi-steady mechanism cannot be accepted for them while rejecting it for the crane-fly. All of these insects flex their wings in a similar manner during rotation, and could use the flex mechanism for lift generation. The implication is that most, if not all, hovering animals do not rely on quasi-steady aerodynamics, but use rotational lift mechanisms instead. It is not possible to reconcile the power estimates with the commonly accepted values of both the mechanochemical efficiency of insect flight muscle (about 25%) and its maximum mechanical power output (about 20 W N -1 of muscle). Maximum efficiencies of 12-29% could be obtained only if there is no elastic storage of the kinetic energy of the flapping wings, but this would require more than twice the accepted value for maximum mechanical power output. The available evidence suggests that substantial elastic storage does occur, and that the maximum mechanical power output is close to the accepted value. If so, then the efficiency of both fibrillar and non-fibrillar flight muscle is likely to be only 5-9%.


Sign in / Sign up

Export Citation Format

Share Document