Acceleration and balance in trotting dogs

1999 ◽  
Vol 202 (24) ◽  
pp. 3565-3573 ◽  
Author(s):  
D.V. Lee ◽  
J.E. Bertram ◽  
R.J. Todhunter

During quadrupedal trotting, diagonal pairs of limbs are set down in unison and exert forces on the ground simultaneously. Ground-reaction forces on individual limbs of trotting dogs were measured separately using a series of four force platforms. Vertical and fore-aft impulses were determined for each limb from the force/time recordings. When mean fore-aft acceleration of the body was zero in a given trotting step (steady state), the fraction of vertical impulse on the forelimb was equal to the fraction of body weight supported by the forelimbs during standing (approximately 60 %). When dogs accelerated or decelerated during a trotting step, the vertical impulse was redistributed to the hindlimb or forelimb, respectively. This redistribution of the vertical impulse is due to a moment exerted about the pitch axis of the body by fore-aft accelerating and decelerating forces. Vertical forces exerted by the forelimb and hindlimb resist this pitching moment, providing stability during fore-aft acceleration and deceleration.

2013 ◽  
Vol 29 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Shiu Hong Wong ◽  
Tianjian Ji ◽  
Youlian Hong ◽  
Siu Lun Fok ◽  
Lin Wang

The low impact forces of Tai Chi push-hand exercises may be particularly suited for older people and for those with arthritis; however, the biomechanics of push-hand exercises have not previously been reported. This paper examines the ground reaction forces (GRFs) and plantar force distributions during Tai Chi push-hand exercises in a stationary stance with and without an opponent. Ten male Tai Chi practitioners participated in the study. The GRFs of each foot were measured in three perpendicular directions using two force plates (Kistler). The plantar force distribution of each foot was measured concurrently using an insole sensor system (Novel). The results showed that the average maximum vertical GRF of each foot was not more than 88% ± 6.1% of the body weight and the sum of the vertical forces (103% ± 1.4%) generated by the two feet approximately equals the body weight at any one time. The horizontal GRFs generated by the two feet were in the opposite directions and the measured mean peak values were not more than 12% ± 2.8% and 17% ± 4.3% of the body weight in the medio-lateral and antero-posterior directions respectively. Among the nine plantar areas, the toes sustained the greatest plantar force. This study indicates that push-hand exercises generate lower vertical forces than those induced by walking, bouncing, jumping and Tai Chi gait, and that the greatest plantar force is located in the toe area, which may have an important application in balance training particularly for older adults.


Author(s):  
Berkant Erman ◽  
Mehmet Zeki Ozkol ◽  
Jelena Ivanović ◽  
Hakan Arslan ◽  
Marko Ćosić ◽  
...  

The purpose of this study was to analyse in detail body weight squat (BWS)’ fatigue effect on the range of motions (ROM) of the hip, knee, ankle and ground reaction forces (GRF). Twenty male recreational athletes (24.0 ± 3.1 years, 178.85 ± 7.12 cm and 78.7 ± 11.45 kg) participated in this study. BWS were performed on four load cell platforms until the participants failed to continue. Participants performed 73 ± 27 repetitions and the duration to complete of the repetitions was 140.72 ± 62.28 s during the BWS exercise. The forefoot and hindfoot of the feet were on two load cells, thus, there were two under each foot. All of the data collected was divided into three sections for analysis (24 ± 9 repetitions for each). In terms of GRF of the fore feet and hind feet, significant differences and medium to large effect size were found between each section (p = 0.006~0.040, ES = 0.693~0.492). No significant differences were found between right and left leg in all sections. Significant differences were found in the ROM of the hip between the sections of first-third (p = 0.044, ES = 0.482) and second-third (p = 0.034, ES = 0.510), the ROM of the knee first-third (p = 0.014, ES = 0.602) and second-third (p = 0.005, ES = 0.701) and for the ROM of the ankle first-second (p = 0.045, ES = 0.479). As a result, end-of-exercise fatigue caused an increase in the ROM of the hip, knee and ankle. Thus, it is observed that fatigue induced increased ROM, also increases the GRF towards the forefeet.


2019 ◽  
Vol 126 (5) ◽  
pp. 1315-1325 ◽  
Author(s):  
Andrew B. Udofa ◽  
Kenneth P. Clark ◽  
Laurence J. Ryan ◽  
Peter G. Weyand

Although running shoes alter foot-ground reaction forces, particularly during impact, how they do so is incompletely understood. Here, we hypothesized that footwear effects on running ground reaction force-time patterns can be accurately predicted from the motion of two components of the body’s mass (mb): the contacting lower-limb (m1 = 0.08mb) and the remainder (m2 = 0.92mb). Simultaneous motion and vertical ground reaction force-time data were acquired at 1,000 Hz from eight uninstructed subjects running on a force-instrumented treadmill at 4.0 and 7.0 m/s under four footwear conditions: barefoot, minimal sole, thin sole, and thick sole. Vertical ground reaction force-time patterns were generated from the two-mass model using body mass and footfall-specific measures of contact time, aerial time, and lower-limb impact deceleration. Model force-time patterns generated using the empirical inputs acquired for each footfall matched the measured patterns closely across the four footwear conditions at both protocol speeds ( r2 = 0.96 ± 0.004; root mean squared error  = 0.17 ± 0.01 body-weight units; n = 275 total footfalls). Foot landing angles (θF) were inversely related to footwear thickness; more positive or plantar-flexed landing angles coincided with longer-impact durations and force-time patterns lacking distinct rising-edge force peaks. Our results support three conclusions: 1) running ground reaction force-time patterns across footwear conditions can be accurately predicted using our two-mass, two-impulse model, 2) impact forces, regardless of foot strike mechanics, can be accurately quantified from lower-limb motion and a fixed anatomical mass (0.08mb), and 3) runners maintain similar loading rates (ΔFvertical/Δtime) across footwear conditions by altering foot strike angle to regulate the duration of impact. NEW & NOTEWORTHY Here, we validate a two-mass, two-impulse model of running vertical ground reaction forces across four footwear thickness conditions (barefoot, minimal, thin, thick). Our model allows the impact portion of the impulse to be extracted from measured total ground reaction force-time patterns using motion data from the ankle. The gait adjustments observed across footwear conditions revealed that runners maintained similar loading rates across footwear conditions by altering foot strike angles to regulate the duration of impact.


1999 ◽  
Vol 86 (5) ◽  
pp. 1657-1662 ◽  
Author(s):  
Young-Hui Chang ◽  
Rodger Kram

Previous studies have suggested that generating vertical force on the ground to support body weight (BWt) is the major determinant of the metabolic cost of running. Because horizontal forces exerted on the ground are often an order of magnitude smaller than vertical forces, some have reasoned that they have negligible cost. Using applied horizontal forces (AHF; negative is impeding, positive is aiding) equal to −6, −3, 0, +3, +6, +9, +12, and +15% of BWt, we estimated the cost of generating horizontal forces while subjects were running at 3.3 m/s. We measured rates of oxygen consumption (V˙o 2) for eight subjects. We then used a force-measuring treadmill to measure ground reaction forces from another eight subjects. With an AHF of −6% BWt,V˙o 2 increased 30% compared with normal running, presumably because of the extra work involved. With an AHF of +15% BWt, the subjects exerted ∼70% less propulsive impulse and exhibited a 33% reduction inV˙o 2. Our data suggest that generating horizontal propulsive forces constitutes more than one-third of the total metabolic cost of normal running.


2021 ◽  
Vol 10 (22) ◽  
pp. 5299
Author(s):  
Łukasz Sikorski ◽  
Andrzej Czamara

The objective of this study was to assess the effectiveness of, and the correlation between, an average of 42 supervised physiotherapy (SVPh) visits for the vertical ground reaction forces component (vGRF) using ankle hops during two- and one-legged vertical hops (TLH and OLH, respectively), six months after the surgical suturing of the Achilles tendon using the open method (SSATOM) via Keesler’s technique. Hypothesis: Six months of supervised physiotherapy with a higher number of visits (SPHNVs) was positively correlated with higher vGRF values during TLH and OLH. Group I comprised male patients (n = 23) after SSATOM (SVPh x = 42 visits), and Group II comprised males (n = 23) without Achilles tendon injuries. In the study groups, vGRF was measured during TLH and OLH in the landing phase using two force plates. The vGRF was normalized to the body mass. The limb symmetry index (LSI) of vGRF values was calculated. The ranges of motion of the foot and circumferences of the ankle joint and shin were measured. Then, 10 m unassisted walking, the Thompson test, and pain were assessed. A parametric test for dependent and independent samples, ANOVA and Tukey’s test for between-group comparisons, and linear Pearson’s correlation coefficient calculations were performed. Group I revealed significantly lower vGRF values during TLH and OLH for the operated limb and LSI values compared with the right and left legs in Group II (p ≤ 0.001). A larger number of visits correlates with higher vGRF values for the operated limb during TLH (r = 0.503; p = 0.014) and OLH (r = 0.505; p = 0.014). An average of 42 SVPh visits in 6 months was insufficient to obtain similar values of relative vGRF and their LSI during TLH and OLH, but the hypothesis was confirmed that SPHNVs correlate with higher relative vGRF values during TLH and OLH in the landing phase.


2001 ◽  
Vol 204 (11) ◽  
pp. 1979-1989 ◽  
Author(s):  
Wallace O. Bennett ◽  
Rachel S. Simons ◽  
Elizabeth L. Brainerd

SUMMARY The function of the lateral hypaxial muscles during locomotion in tetrapods is controversial. Currently, there are two hypotheses of lateral hypaxial muscle function. The first, supported by electromyographic (EMG) data from a lizard (Iguana iguana) and a salamander (Dicamptodon ensatus), suggests that hypaxial muscles function to bend the body during swimming and to resist long-axis torsion during walking. The second, supported by EMG data from lizards during relatively high-speed locomotion, suggests that these muscles function primarily to bend the body during locomotion, not to resist torsional forces. To determine whether the results from D. ensatus hold for another salamander, we recorded lateral hypaxial muscle EMGs synchronized with body and limb kinematics in the tiger salamander Ambystoma tigrinum. In agreement with results from aquatic locomotion in D. ensatus, all four layers of lateral hypaxial musculature were found to show synchronous EMG activity during swimming in A. tigrinum. Our findings for terrestrial locomotion also agree with previous results from D. ensatus and support the torsion resistance hypothesis for terrestrial locomotion. We observed asynchronous EMG bursts of relatively high intensity in the lateral and medial pairs of hypaxial muscles during walking in tiger salamanders (we call these ‘α-bursts’). We infer from this pattern that the more lateral two layers of oblique hypaxial musculature, Mm. obliquus externus superficialis (OES) and obliquus externus profundus (OEP), are active on the side towards which the trunk is bending, while the more medial two layers, Mm. obliquus internus (OI) and transversus abdominis (TA), are active on the opposite side. This result is consistent with the hypothesis proposed for D. ensatus that the OES and OEP generate torsional moments to counteract ground reaction forces generated by forelimb support, while the OI and TA generate torsional moments to counteract ground reaction forces from hindlimb support. However, unlike the EMG pattern reported for D. ensatus, a second, lower-intensity burst of EMG activity (‘β-burst’) was sometimes recorded from the lateral hypaxial muscles in A. tigrinum. As seen in other muscle systems, these β-bursts of hypaxial muscle coactivation may function to provide fine motor control during locomotion. The presence of asynchronous, relatively high-intensity α-bursts indicates that the lateral hypaxial muscles generate torsional moments during terrestrial locomotion, but it is possible that the balance of forces from both α- and β-bursts may allow the lateral hypaxial muscles to contribute to lateral bending of the body as well.


2007 ◽  
Vol 40 (15) ◽  
pp. 3527-3532 ◽  
Author(s):  
Brian C. Glaister ◽  
Michael S. Orendurff ◽  
Jason A. Schoen ◽  
Glenn K. Klute

2008 ◽  
Vol 24 (3) ◽  
pp. 288-297 ◽  
Author(s):  
Alena M. Grabowski ◽  
Rodger Kram

The biomechanical and metabolic demands of human running are distinctly affected by velocity and body weight. As runners increase velocity, ground reaction forces (GRF) increase, which may increase the risk of an overuse injury, and more metabolic power is required to produce greater rates of muscular force generation. Running with weight support attenuates GRFs, but demands less metabolic power than normal weight running. We used a recently developed device (G-trainer) that uses positive air pressure around the lower body to support body weight during treadmill running. Our scientific goal was to quantify the separate and combined effects of running velocity and weight support on GRFs and metabolic power. After obtaining this basic data set, we identified velocity and weight support combinations that resulted in different peak GRFs, yet demanded the same metabolic power. Ideal combinations of velocity and weight could potentially reduce biomechanical risks by attenuating peak GRFs while maintaining aerobic and neuromuscular benefits. Indeed, we found many combinations that decreased peak vertical GRFs yet demanded the same metabolic power as running slower at normal weight. This approach of manipulating velocity and weight during running may prove effective as a training and/or rehabilitation strategy.


2007 ◽  
Vol 97 (4) ◽  
pp. 2663-2675 ◽  
Author(s):  
Simon F. Giszter ◽  
Michelle R. Davies ◽  
Virginia Graziani

Some rats spinalized P1/P2 achieve autonomous weight-supported locomotion and quiet stance as adults. We used force platforms and robot-applied perturbations to test such spinalized rats ( n = 6) that exhibited both weight-supporting locomotion and stance, and also normal rats ( n = 8). Ground reaction forces in individual limbs and the animals' center of pressure were examined. In normal rats, both forelimbs and hindlimbs participated actively to control horizontal components of ground reaction forces. Rostral perturbations increased forelimb ground reaction forces and caudal perturbations increased hindlimb ground reaction forces. Operate rats carried 60% body weight on the forelimbs and had a more rostral center of pressure placement. The pattern in normal rats was to carry significantly more weight on the hindlimbs in quiet stance (roughly 60%). The strategy of operate rats to compensate for perturbations was entirely in forelimbs; as a result, the hindlimbs were largely isolated from the perturbation. Stiffness magnitude of the whole body was measured: its magnitude was hourglass shaped, with the principal axis oriented rostrocaudally. Operate rats were significantly less stiff—only 60–75% of normal rats' stiffness. The injured rats adopt a stance strategy that isolates the hindlimbs from perturbation and may thus prevent hindlimb loadings. Such loadings could initiate reflex stepping, which we observed. This might activate lumbar pattern generators used in their locomotion. Adult spinalized rats never achieve independent hindlimb weight-supported stance. The stance strategy of the P1 spinalized rats differed strongly from the behavior of intact rats and may be difficult for rats spinalized as adults to master.


2011 ◽  
Vol 133 (12) ◽  
Author(s):  
Jeff A. Nessler ◽  
Moustafa Moustafa-Bayoumi ◽  
Dalziel Soto ◽  
Jessica Duhon ◽  
Ryan Schmitt

Robotic locomotor training devices have gained popularity in recent years, yet little has been reported regarding contact forces experienced by the subject performing automated locomotor training, particularly in animal models of neurological injury. The purpose of this study was to develop a means for acquiring contact forces between a robotic device and a rodent model of spinal cord injury through instrumentation of a robotic gait training device (the rat stepper) with miniature force/torque sensors. Sensors were placed at each interface between the robot arm and animal’s hindlimb and underneath the stepping surface of both hindpaws (four sensors total). Twenty four female, Sprague-Dawley rats received mid-thoracic spinal cord transections as neonates and were included in the study. Of these 24 animals, training began for 18 animals at 21 days of age and continued for four weeks at five min/day, five days/week. The remaining six animals were untrained. Animal-robot contact forces were acquired for trained animals weekly and untrained animals every two weeks while stepping in the robotic device with both 60 and 90% of their body weight supported (BWS). Animals that received training significantly increased the number of weight supported steps over the four week training period. Analysis of raw contact forces revealed significant increases in forward swing and ground reaction forces during this time, and multiple aspects of animal-robot contact forces were significantly correlated with weight bearing stepping. However, when contact forces were normalized to animal body weight, these increasing trends were no longer present. Comparison of trained and untrained animals revealed significant differences in normalized ground reaction forces (both horizontal and vertical) and normalized forward swing force. Finally, both forward swing and ground reaction forces were significantly reduced at 90% BWS when compared to the 60% condition. These results suggest that measurement of animal-robot contact forces using the instrumented rat stepper can provide a sensitive and reliable measure of hindlimb locomotor strength and control of flexor and extensor muscle activity in neurologically impaired animals. Additionally, these measures may be useful as a means to quantify training intensity or dose-related functional outcomes of automated training.


Sign in / Sign up

Export Citation Format

Share Document