scholarly journals Cool your jets: biological jet propulsion in marine invertebrates

2021 ◽  
Vol 224 (12) ◽  
Author(s):  
Brad J. Gemmell ◽  
John O. Dabiri ◽  
Sean P. Colin ◽  
John H. Costello ◽  
James P. Townsend ◽  
...  

ABSTRACT Pulsatile jet propulsion is a common swimming mode used by a diverse array of aquatic taxa from chordates to cnidarians. This mode of locomotion has interested both biologists and engineers for over a century. A central issue to understanding the important features of jet-propelling animals is to determine how the animal interacts with the surrounding fluid. Much of our knowledge of aquatic jet propulsion has come from simple theoretical approximations of both propulsive and resistive forces. Although these models and basic kinematic measurements have contributed greatly, they alone cannot provide the detailed information needed for a comprehensive, mechanistic overview of how jet propulsion functions across multiple taxa, size scales and through development. However, more recently, novel experimental tools such as high-speed 2D and 3D particle image velocimetry have permitted detailed quantification of the fluid dynamics of aquatic jet propulsion. Here, we provide a comparative analysis of a variety of parameters such as efficiency, kinematics and jet parameters, and review how they can aid our understanding of the principles of aquatic jet propulsion. Research on disparate taxa allows comparison of the similarities and differences between them and contributes to a more robust understanding of aquatic jet propulsion.

Author(s):  
Yoshie Watanabe ◽  
Yuji Hashizume ◽  
Nobuyuki Fujisawa

An experimental technique for simultaneous measurement of temperature and velocity in a thermal flow is described. This technique is based on the two-color laser-induced fluorescence technique combined with the particle image velocimetry. Illumination is provided from Nd:YAG laser and the fluorescent dyes are chosen as Rhodamine B and Fluorescent Sodium, which combination allows the accurate velocity measurement in a wide range of flow velocity and high temperature sensitivity in temperature measurement. The measurement of temperature and velocity in turbulent buoyant plume is carried out by this method, and the structure of the plume is studied in connection with the entrainment of surrounding fluid at the interface.


2018 ◽  
Vol 15 (148) ◽  
pp. 20180441 ◽  
Author(s):  
Per Henningsson ◽  
Lasse Jakobsen ◽  
Anders Hedenström

In this study, we explicitly examine the aerodynamics of manoeuvring flight in animals. We studied brown long-eared bats flying in a wind tunnel while performing basic sideways manoeuvres. We used particle image velocimetry in combination with high-speed filming to link aerodynamics and kinematics to understand the mechanistic basis of manoeuvres. We predicted that the bats would primarily use the downstroke to generate the asymmetries for the manoeuvre since it has been shown previously that the majority of forces are generated during this phase of the wingbeat. We found instead that the bats more often used the upstroke than they used the downstroke for this. We also found that the bats used both drag/thrust-based and lift-based asymmetries to perform the manoeuvre and that they even frequently switch between these within the course of a manoeuvre. We conclude that the bats used three main modes: lift asymmetries during downstroke, thrust/drag asymmetries during downstroke and thrust/drag asymmetries during upstroke. For future studies, we hypothesize that lift asymmetries are used for fast turns and thrust/drag for slow turns and that the choice between up- and downstroke depends on the timing of when the bat needs to generate asymmetries.


2012 ◽  
Vol 15 (3) ◽  
pp. 193-195 ◽  
Author(s):  
K. Hashimoto ◽  
A. Hori ◽  
T. Hara ◽  
S. Onogi ◽  
H. Mouri

Author(s):  
Mohammed El Adawy ◽  
Morgan Heikal ◽  
bin Abd. Aziz Abd. Rashid

Abstract RICARDO-VECTIS CFD simulation of the in-cylinder air flow was first validated with those of the experimental results from high-speed particle image velocimetry (PIV) measurements taking cognisant of the mid-cylinder tumble plane. Furthermore, high-speed fuel spray measurements were carried out simultaneously with the intake-generated tumble motion at high valve lift using high-speed time-resolved PIV to chronicle the spatial and time-based development of air/fuel mixture. The effect of injection pressure(32.5 and 35.0 MPa) and pressure variation across the air intake valves(150, 300 and 450 mmH2O) on the interaction process were investigated at valve lift 10 mm where the tumble vortex was fully developed and filled the whole cylinder under steady-state conditions. The PIV results illustrated that the intake generated-tumble motion had a substantial impact on the fuel spray distortion and dispersion inside the cylinder. During the onset of the injection process the tumble motion diverted the spray plume slightly towards the exhaust side before it followed completely the tumble vortex. The fuel spray plume required 7.2 ms, 6.2 ms and 5.9 ms to totally follow the in-cylinder air motion for pressure differences 150, 300 and 450 mmH2O, respectively. Despite, the spray momentum was the same for the same injection pressure, the magnitude of kinetic energy was different for different cases of pressure differences and subsequently the in-cylinder motion strength.


Author(s):  
Seyed Sobhan Aleyasin ◽  
Mark Francis Tachie

Twin round and elliptic jets with nozzle spacing of S/d = 2.8 are investigated and the results are compared with those obtained from single jets. The measurements were performed at Re = 10000 using particle image velocimetry. The results show that the twin elliptic jets merge and combine faster than the round jets. However, the twin elliptic jets have lower spreading than their corresponding single jet but in the round jets it is opposite. The vortical structures obtained using swirling strength analysis are more intense in the elliptic jets compared with the round jets; consistent with their higher spreading. In the shear layers, the velocity skewness is considerably positive due to the diffusion of high-speed jet fluid towards the ambient. On the other hand, the streamwise skewness on the centerline is negative because of the entrainment of low-speed ambient fluid; resulting in centerline velocity decay. In addition, the joint and weighted joint probability density functions are used to understand the dominant events which contribute into the mixing of the jets with their surrounding fluid.


Sign in / Sign up

Export Citation Format

Share Document