scholarly journals Pursuit predation with intermittent locomotion in zebrafish

2020 ◽  
pp. jeb.230623 ◽  
Author(s):  
Alberto P. Soto ◽  
Matthew J. McHenry

The control of a predator's locomotion is critical to its ability to capture prey. Flying animals adjust their heading continuously with control similar to guided missiles. However, many animals do not move with rapid continuous motion, but rather interrupt their progress with frequent pauses. To understand how such intermittent locomotion may be controlled during predation, we examined the kinematics of zebrafish (Danio rerio) as they pursued larval prey of the same species. Like many fishes, zebrafish move with discrete burst-and-coast swimming. We found that the change in heading and tail excursion during the burst phase was linearly related to the prey's bearing. These results suggest a strategy, which we call intermittent pure pursuit, that offers advantages in sensing and control. This control strategy is similar to perception and path-planning algorithms required in the design of some autonomous robots and may be common to a diversity of animals.

2018 ◽  
Vol 06 (02) ◽  
pp. 95-118 ◽  
Author(s):  
Mohammadreza Radmanesh ◽  
Manish Kumar ◽  
Paul H. Guentert ◽  
Mohammad Sarim

Unmanned aerial vehicles (UAVs) have recently attracted the attention of researchers due to their numerous potential civilian applications. However, current robot navigation technologies need further development for efficient application to various scenarios. One key issue is the “Sense and Avoid” capability, currently of immense interest to researchers. Such a capability is required for safe operation of UAVs in civilian domain. For autonomous decision making and control of UAVs, several path-planning and navigation algorithms have been proposed. This is a challenging task to be carried out in a 3D environment, especially while accounting for sensor noise, uncertainties in operating conditions, and real-time applicability. Heuristic and non-heuristic or exact techniques are the two solution methodologies that categorize path-planning algorithms. The aim of this paper is to carry out a comprehensive and comparative study of existing UAV path-planning algorithms for both methods. Three different obstacle scenarios test the performance of each algorithm. We have compared the computational time and solution optimality, and tested each algorithm with variations in the availability of global and local obstacle information.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1111
Author(s):  
Ye ◽  
Dong ◽  
Hong

With the increase of on-orbit maintenance and support requirements, the application of a space manipulator is becoming more promising. In actual operation, the strong coupling of the free-floating space robot itself and the unknown disturbance of the contact target caused a major challenge to the robot base posture control. Traditional Reaction Null Space (RNS) motion planning and control methods require the construction of precise dynamic models, which is impossible in reality. In order to solve this problem, this paper proposes a new Adaptive Reaction Null Space (ARNS) path planning and control strategy for the contact of free-floating space robots with unknown targets. The ARNS path planning strategy is constructed by the Variable Forgetting Factor Recursive Least Squares (VFF–RLS) algorithm. At the same time, a robust adaptive control strategy based on the Strategy Self-Adaption Differential Evolution–Extreme Learning Machine (SSADE–ELM) algorithm is proposed to track the dynamic changes of the planned path. The algorithm enables us to intelligently learn and compensate for the unknown disturbance. Then, this paper constructs a robust controller to compensate model uncertainty. A striking feature of the proposed strategy is that it does not require an accurate system model or any information about unknown attributes. This design can dynamically implement RNS path tracking performance. Finally, through simulation and experiment, the proposed algorithm is compared with the existing methods to prove its effectiveness and superiority.


Author(s):  
Anete Vagale ◽  
Rachid Oucheikh ◽  
Robin T. Bye ◽  
Ottar L. Osen ◽  
Thor I. Fossen

AbstractAutonomous surface vehicles are gaining increasing attention worldwide due to the potential benefits of improving safety and efficiency. This has raised the interest in developing methods for path planning that can reduce the risk of collisions, groundings, and stranding accidents at sea, as well as costs and time expenditure. In this paper, we review guidance, and more specifically, path planning algorithms of autonomous surface vehicles and their classification. In particular, we highlight vessel autonomy, regulatory framework, guidance, navigation and control components, advances in the industry, and previous reviews in the field. In addition, we analyse the terminology used in the literature and attempt to clarify ambiguities in commonly used terms related to path planning. Finally, we summarise and discuss our findings and highlight the potential need for new regulations for autonomous surface vehicles.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 295-305
Author(s):  
Wesley Gilbert ◽  
Ivan Trush ◽  
Bruce Allison ◽  
Randy Reimer ◽  
Howard Mason

Normal practice in continuous digester operation is to set the production rate through the chip meter speed. This speed is seldom, if ever, adjusted except to change production, and most of the other digester inputs are ratioed to it. The inherent assumption is that constant chip meter speed equates to constant dry mass flow of chips. This is seldom, if ever, true. As a result, the actual production rate, effective alkali (EA)-to-wood and liquor-to-wood ratios may vary substantially from assumed values. This increases process variability and decreases profits. In this report, a new continuous digester production rate control strategy is developed that addresses this shortcoming. A new noncontacting near infrared–based chip moisture sensor is combined with the existing weightometer signal to estimate the actual dry chip mass feedrate entering the digester. The estimated feedrate is then used to implement a novel feedback control strategy that adjusts the chip meter speed to maintain the dry chip feedrate at the target value. The report details the results of applying the new measurements and control strategy to a dual vessel continuous digester.


2014 ◽  
Vol 9 (4) ◽  
pp. 792 ◽  
Author(s):  
Anna Pinnarelli ◽  
Giuseppe Barone ◽  
Giovanni Brusco ◽  
Alessandro Burgio ◽  
Daniele Menniti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document