scholarly journals Flight activity and age cause wing damage in house flies

Author(s):  
Henja-Niniane Wehmann ◽  
Thomas Engels ◽  
Fritz-Olaf Lehmann

Wing damage attenuates aerial performance in many flying animals such as birds, bats and insects. Especially insect wings are fragile and light in order to reduce inertial power requirements for flight at elevated wing flapping frequencies. There is a continuing debate on the factors causing wing damage in insects including collisions with objects, mechanical stress during flight activity, and aging. This experimental study is engaged with the reasons and significance of wing damage for flight in the house fly Musca domestica. We determined natural wing area loss under two housing conditions and recorded flight activity and flight ability throughout the animals’ lifetime. Our data show that wing damage occurs on average after 6 h of flight, is sex-specific, and depends on housing conditions. Statistical tests show that both physiological age and flight activity have similar significance as predictors for wing damage. Tests on freely flying flies showed that minimum wing area for active flight is approximately 10-34% below the initial area and requires a left-right wing area asymmetry of less than approximately 25%. Our findings broadly confirm predictions from simple aerodynamic theory based on mean wing velocity and area, and are also consistent with previous wing damage measurements in other insect species.

Res Publica ◽  
1995 ◽  
Vol 37 (2) ◽  
pp. 177-188
Author(s):  
Wolfgang Jagodzinski ◽  
Jürgen Friedrichs ◽  
Hermann Dülmer

During the last years immigration has aggravated the socialproblems in many disadvantaged urban districts. High proportions of foreigners are concentrating in those areas which suffer from unemployment and bad housing conditions. The accumulation of social problems has created a climate of insecurity, social prejudices, and political dissatisfaction. Since political discontent presently is not remedied by the established political parties, it results in low voting participation and increasing proportions of right wing votes. The close connection between the intensity of social problems on the one side, low voter turnout and high success of right extremist parties on the other side, is empirically established by an ecological analysis of the recent state elections in Hamburg.


2021 ◽  
Author(s):  
Mark Jankauski ◽  
Ryan Schwab ◽  
Cailin Casey ◽  
Andrew Mountcastle

Abstract Flapping insect wings frequently collide with vegetation and other obstacles during flight. Repeated collisions may irreversibly damage the insect wing, thereby compromising the insect’s ability to fly. Further, reaction torques caused by the collision may destabilize the insect and hinder its ability to maneuver. To mitigate the adverse effects of impact, some insect wings are equipped with a flexible joint called a “costal break.” The costal break buckles once it exceeds a critical angle, which is believed to improve flight stability and prevent irreversible wing damage. However, to our knowledge, there are no models to predict the dynamics of the costal break. Through this research, we develop a simple model of an insect wing with a costal break. The wing was modeled as two beams interconnected by a torsional spring, where the stiffness of the torsional spring instantaneously decreases once it has exceeded a critical angle. We conducted a series of static tests to approximate model parameters. Then, we used numerical simulation to estimate the peak stresses and reaction moments experienced by the wing during a collision. We found that costal break increased the wing’s natural frequency by about 50% compared to a homogeneous wing and thus reduced the stress associated with normal flapping. Buckling did not significantly affect peak stresses during collision. Joint buckling reduced the peak reaction moment by about 32%, suggesting that the costal break enhances flight stability.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Andrew D. Higginson ◽  
Christopher J. Barnard ◽  
Adam Tofilski ◽  
Luis Medina ◽  
Francis Ratnieks

Bees acquire wing damage as they age, and loss of wing area affects longevity and behaviour. This may influence colony performance via effects on worker behaviour. The effects of experimental wing damage were studied in worker honeybees in observation hives by recording survivorship, how often and for how long bees foraged, and by decoding waggle dances. Mortality rate increased with both age and wing damage. Damaged bees carried out shorter and/or less frequent foraging trips, foraged closer to the hive, and reported the profitability of flower patches to be lower than did controls. These results suggest that wing damage caused a reduction in foraging ability, and that damaged bees adjusted their foraging behaviour accordingly. Furthermore, the results suggest that wing damage affects the profitability of nectar sources. These results have implications for the colony dynamics and foraging efficiency in honeybees.


2018 ◽  
Vol 5 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Andrew K. Davis ◽  
Jacobus C. de Roode

Abstract There is mounting evidence that the longterm declines of overwintering monarchs in Mexico are exacerbated by losses during the fall migratory journey. Infection with the protozoan, Ophryocystis elektroscirrha (OE), is known to negatively impact migration success. Here we examine how infections affect specific wing traits of monarchs that are important for migratory success. We used a collection of infected and uninfected monarchs reared under identical conditions, and from the (deceased) specimens, measured wing area (larger monarchs are known to have greater migratory success), wing color (the shade of orange pigmentation in monarchs is a known predictor of migration and flight ability), and the physical density of wings (a measure of wing mass per unit area). We also measured the tear-resistance of wings, using an apparatus that measured the force needed to cause a tear in the wing. Results showed no effect of OE on overall wing size, nor on the shade of orange pigmentation, but a clear effect on measures of physical density and tensile strength. Wings of infected monarchs weighed less per unit area (by 6%), and there was a 20% reduction in tear-resistance of wings. All results were qualitatively similar in a follow-up investigation using freshly-killed specimens. Collectively, this indicates infected monarchs are more prone to wing damage, which would be costly during long-distance migration. As such, this would be one more way in which OE infections reduce migratory success. Given the toll of OE to the monarch population, especially during migration, it would be prudent to focus conservation efforts on mitigating human activities that spread this disease.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 391 ◽  
Author(s):  
Levi K. Zahn ◽  
Alec C. Gerry

House flies (Musca domestica L.) are common synanthropic pests associated with confined animal operations, including dairy farms. House flies can cause substantial nuisance and may transmit human and animal pathogens. Surprisingly little is known about the daily flight activity of house flies. This study examined diurnal house fly flight activity on two southern California dairies using clear sticky traps to capture flies over hourly intervals. Flight activity for both males and females combined started near dawn and generally increased to a single broad activity peak during mid to late morning. Male flight activity peaked earlier than female flight activity and this separation in peak activity widened as mean daytime temperature increased. Flight activity for both sexes increased rapidly during early morning in response to the combined effects of increasing light intensity and temperature, with decreasing flight activity late in the day as temperature decreased. During midday, flight activity was slightly negatively associated with light intensity and temperature. Collection period (time of day) was a useful predictor of house fly activity on southern California dairies and the diurnal pattern of flight activity should be considered when developing house fly monitoring and control programs.


2017 ◽  
Vol 48 (1) ◽  
pp. 40-46 ◽  
Author(s):  
Jolanda Jetten ◽  
Rachel Ryan ◽  
Frank Mols

Abstract. What narrative is deemed most compelling to justify anti-immigrant sentiments when a country’s economy is not a cause for concern? We predicted that flourishing economies constrain the viability of realistic threat arguments. We found support for this prediction in an experiment in which participants were asked to take on the role of speechwriter for a leader with an anti-immigrant message (N = 75). As predicted, a greater percentage of realistic threat arguments and fewer symbolic threat arguments were generated in a condition in which the economy was expected to decline than when it was expected to grow or a baseline condition. Perhaps more interesting, in the economic growth condition, the percentage realistic entitlements and symbolic threat arguments generated were higher than when the economy was declining. We conclude that threat narratives to provide a legitimizing discourse for anti-immigrant sentiments are tailored to the economic context.


2015 ◽  
Vol 223 (3) ◽  
pp. 151-156 ◽  
Author(s):  
Nina Schweinfurth ◽  
Undine E. Lang

Abstract. In the development of new psychiatric drugs and the exploration of their efficacy, behavioral testing in mice has always shown to be an inevitable procedure. By studying the behavior of mice, diverse pathophysiological processes leading to depression, anxiety, and sickness behavior have been revealed. Moreover, laboratory research in animals increased at least the knowledge about the involvement of a multitude of genes in anxiety and depression. However, multiple new possibilities to study human behavior have been developed recently and improved and enable a direct acquisition of human epigenetic, imaging, and neurotransmission data on psychiatric pathologies. In human beings, the high influence of environmental and resilience factors gained scientific importance during the last years as the search for key genes in the development of affective and anxiety disorders has not been successful. However, environmental influences in human beings themselves might be better understood and controllable than in mice, where environmental influences might be as complex and subtle. The increasing possibilities in clinical research and the knowledge about the complexity of environmental influences and interferences in animal trials, which had been underestimated yet, question more and more to what extent findings from laboratory animal research translate to human conditions. However, new developments in behavioral testing of mice involve the animals’ welfare and show that housing conditions of laboratory mice can be markedly improved without affecting the standardization of results.


Sign in / Sign up

Export Citation Format

Share Document