scholarly journals Experimental Wing Damage Affects Foraging Effort and Foraging Distance in HoneybeesApis mellifera

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Andrew D. Higginson ◽  
Christopher J. Barnard ◽  
Adam Tofilski ◽  
Luis Medina ◽  
Francis Ratnieks

Bees acquire wing damage as they age, and loss of wing area affects longevity and behaviour. This may influence colony performance via effects on worker behaviour. The effects of experimental wing damage were studied in worker honeybees in observation hives by recording survivorship, how often and for how long bees foraged, and by decoding waggle dances. Mortality rate increased with both age and wing damage. Damaged bees carried out shorter and/or less frequent foraging trips, foraged closer to the hive, and reported the profitability of flower patches to be lower than did controls. These results suggest that wing damage caused a reduction in foraging ability, and that damaged bees adjusted their foraging behaviour accordingly. Furthermore, the results suggest that wing damage affects the profitability of nectar sources. These results have implications for the colony dynamics and foraging efficiency in honeybees.

2016 ◽  
Vol 3 (5) ◽  
pp. 160043 ◽  
Author(s):  
Ari S. Friedlaender ◽  
David W. Johnston ◽  
Reny B. Tyson ◽  
Amanda Kaltenberg ◽  
Jeremy A. Goldbogen ◽  
...  

Air-breathing marine animals face a complex set of physical challenges associated with diving that affect the decisions of how to optimize feeding. Baleen whales (Mysticeti) have evolved bulk-filter feeding mechanisms to efficiently feed on dense prey patches. Baleen whales are central place foragers where oxygen at the surface represents the central place and depth acts as the distance to prey. Although hypothesized that baleen whales will target the densest prey patches anywhere in the water column, how depth and density interact to influence foraging behaviour is poorly understood. We used multi-sensor archival tags and active acoustics to quantify Antarctic humpback whale foraging behaviour relative to prey. Our analyses reveal multi-stage foraging decisions driven by both krill depth and density. During daylight hours when whales did not feed, krill were found in deep high-density patches. As krill migrated vertically into larger and less dense patches near the surface, whales began to forage. During foraging bouts, we found that feeding rates (number of feeding lunges per hour) were greatest when prey was shallowest, and feeding rates decreased with increasing dive depth. This strategy is consistent with previous models of how air-breathing diving animals optimize foraging efficiency. Thus, humpback whales forage mainly when prey is more broadly distributed and shallower, presumably to minimize diving and searching costs and to increase feeding rates overall and thus foraging efficiency. Using direct measurements of feeding behaviour from animal-borne tags and prey availability from echosounders, our study demonstrates a multi-stage foraging process in a central place forager that we suggest acts to optimize overall efficiency by maximizing net energy gain over time. These data reveal a previously unrecognized level of complexity in predator–prey interactions and underscores the need to simultaneously measure prey distribution in marine central place forager studies.


2016 ◽  
Vol 62 (3-4) ◽  
pp. 171-177 ◽  
Author(s):  
Ling-Ying Shuai ◽  
Yan-Ling Song ◽  
Burt P. Kotler ◽  
Keren Embar ◽  
Zhi-Gao Zeng

We studied the foraging behaviour of two sympatric rodents (Meriones meridianus and Dipus sagitta) in the Gobi Desert, Northwestern China. The role of the foraging behaviour in promoting species coexistence was also examined. We used giving-up densities (GUDs) in artificial food patches to measure the patch use of rodents and video trapping to directly record the foraging behaviour, vigilance, and interspecific interactions. Three potential mechanisms of coexistence were evaluated (1) microhabitat partitioning; (2) spatial heterogeneity of resource abundance with a tradeoff in foraging efficiency vs. locomotion; and (3) temporal partitioning on a daily scale. Compared to M. meridianus, D. sagitta generally possessed lower GUDs, spent more time on patches, and conducted more visits per tray per capita, regardless of microhabitat. However, M. meridianus possessed advantages in average harvesting rates and direct interference against D. sagitta. Our results only partly support the third mechanism listed above. We propose another potential mechanism of coexistence: a tradeoff between interference competition and safety, with M. meridianus better at interference competition and D. sagitta better at avoiding predation risk. This mechanism is uncommon in previously studied desert rodent systems.


2000 ◽  
Vol 48 (2) ◽  
pp. 155 ◽  
Author(s):  
Eve McDonald-Madden ◽  
Lian K. Akers ◽  
Deena J. Brenner ◽  
Sarah Howell ◽  
Blair W. Patullo ◽  
...  

Many eutherian mammals adjust their foraging behaviour according to the presence or threat of predators. Here, we examine experimentally whether an urban population of brushtail possums, Trichosurus vulpecula, similarly adjust their foraging behaviour. Our field experiments manipulated the quantity of food items in artificial feeders placed at different distances from trees. These experiments showed that the possums remained longer at feeders placed far from the trees, but their foraging behaviour did not change with the initial amount of food. The scanning behaviour of possums did not simply increase with distance from the trees, as predicted from studies of other vertebrates. Nevertheless, the number of physical conflicts between individuals increased as the amount of available food decreased. These data suggest that the changes in the foraging behaviour of the possums in this population do not reflect a simple trade-off between foraging efficiency and the risk of predation or competition.


Behaviour ◽  
1995 ◽  
Vol 132 (15-16) ◽  
pp. 1241-1253 ◽  
Author(s):  
R.N. Hughes ◽  
P.A. Mackney

AbstractIndividuals were collected from a residential marine population of Spinachia spinachia, an anadromous population of Gasterosteus aculeatus forma trachura and a residential freshwater population of G. aculeatus forma leiura. After maintenance for 2 months on a diet of mysid, individuals were subjected to ten, consecutive daily trials on a diet of amphipods or oligochaetes. During this period, individuals learned to handle the prey more effectively, as measured by attack efficiency, handling efficiency and handling time. Learning was similar among populations but differed between diets, being more pronounced for amphipods, which are more difficult to catch and handle than oligochaetes. Once trained to these diets, fish were tested for foraging efficiency after successively longer periods of stimulus deprivation, when they were fed a maintenance diet of mysid. All three measures of foraging efficiency with the amphipod diet, but only that based on handling time with the oligochacte diet, declined to naive levels in the residential marine and anadromous populations. No decrease in foraging efficiency with either diet occurred in the residential freshwater population. Memory window was 8 d, 10 d and > 25 d in the residential marine, anadromous and residential freshwater populations respectively. The large difference between the freshwater and two marine populations is interpreted as an adaptive response to the stability of arrays of prey, characteristic of their respective habitats.


2003 ◽  
Vol 33 (5) ◽  
pp. 755-762 ◽  
Author(s):  
Ian G Warkentin ◽  
Allison L Fisher ◽  
Stephen P Flemming ◽  
Shawn E Roberts

We examined the distribution and foraging behaviour of northern waterthrushes (Seiurus noveboracensis) in recently harvested and intact landscapes of Newfoundland. Data were collected along six 1-km segments of stream and adjoining upland habitat resulting in four treatments (harvested or intact, upland or stream) with three replicates each. Although known as a riparian specialist, we found waterthrush territories equally distributed across intact upland and riparian habitats. However, few waterthrushes occupied harvested uplands, while large numbers packed into riparian buffer strips adjacent to these 5- to 10-year-old postharvest clearcuts. Arthropod abundance and biomass were highly variable between years and across the four treatments, generating significant year × treatment interaction effects. Riparian habitat (in both intact and harvested areas) had consistently greater numbers of arthropod prey and more biomass than either upland habitat type. Northern waterthrushes foraging in riparian habitat adjacent to harvested uplands had lower attack rates and more frequent long flights than waterthrushes foraging in the intact treatment types. Prolonged packing of individuals into riparian buffer strips, and apparent adverse affects on waterthrush foraging efficiency, raise concerns about the effectiveness of buffer strips for sustaining viable populations of terrestrial riparian habitat specialists.


Behaviour ◽  
2017 ◽  
Vol 154 (5) ◽  
pp. 563-581 ◽  
Author(s):  
Heidi C. Pearson

The prevalence of leaping across delphinids indicates it has an adaptive benefit. I examined leaping behaviour in dusky dolphins (Lagenorhynchus obscurus) according to signalling, social facilitation, and prey capture hypotheses. I quantified the effect of leaping on group behaviour and fission-fusion and the behavioural context of leaping. I observed dolphins in Admiralty Bay, New Zealand during 171 focal follows totalling 157 h. Data were analysed using generalized estimating equations. Clean leaping had a positive effect on party fission () and foraging behaviour (). Coordinated leaping caused a short-term wane in foraging behaviour () and had a positive effect on party fusion (). Noisy leaping had a negative effect on perpetuating resting and traveling cessation (both ). The signalling hypothesis was the most strongly supported. The social facilitation and prey capture hypotheses were moderately supported. Leaping may provide adaptive benefits such as reduced scramble competition, increased foraging efficiency, and social bonding.


2002 ◽  
Vol 09 (02) ◽  
pp. 181-193 ◽  
Author(s):  
Valery Tereshko ◽  
Troy Lee

We have developed a model of foraging behaviour of a honeybee colony based on reaction-diffusion equations and have studied how mapping the information about the explored environment to the hive determines this behaviour. The model utilizes two dominant components of colony's foraging behaviour — the recruitment to the located nectar sources and the abandonment of them. The recruitment is based upon positive feedback, i.e autocatalytic replication of information about the located source. If every potential forager in the hive, the onlooker, acquires information about all located sources, a common information niche is formed, which leads to the rapid selection of the most profitable nectar source. If the onlookers acquire information about some parts of the environment and slowly learn about the other parts, different information niches where individuals are associated mainly with a particular food source are formed, and the correspondent foraging trails coexist for longer periods. When selected nectar source becomes depleted, the foragers switch over to another, more profitable source. The faster the onlookers learn about the entire environment, the faster that switching occurs.


1999 ◽  
Vol 47 (1) ◽  
pp. 29 ◽  
Author(s):  
Robbie J. Henderson ◽  
Mark A. Elgar

Many animals adjust their behaviour according to the presence or threat of predators. However, the foraging behaviour of sit-and-wait predators is typically thought to be inflexible to short-term changes in the environment. Here we investigate the foraging behaviour of the nocturnally active black house spider, Badumna insignis. Experiments in which different kinds of prey were introduced into the web during either the day or night indicated that the foraging success of Badumna is compromised by behaviours that reduce the risk of predation. During the day, spiders generally remain within the retreat and take longer to reach the prey, which may reduce their foraging success. In contrast, spiders sat exposed at the edge of the retreat at night, and from here could usually reach the prey before it escaped. The spiders were able to escape from a model predator more rapidly if they were at the edge of the retreat than if they were out on the web. These data suggest that the costs to Badumna of reduced fecundity through poor foraging efficiency may be outweighed by the benefits of reducing the risk of predation


2021 ◽  
Author(s):  
◽  
Davide Santoro

<p>The extreme ecological success of insect societies is frequently attributed to the division of labour within their colonies (Chittka & Muller, 2009; Holldobler & Wilson, 2009; E. Wilson & Hölldobler, 2005). Yet, we are far from understanding the causes and consequences of division of labour, implying workers’ specialization (Chittka & Muller, 2009; Dornhaus, 2008). Moreover, little studied is the behaviour of individual workers (Jeanson & Weidenmüller, 2013). Social wasps (Hymenoptera: Vespidae) have received less attention than social bees and ants, and our knowledge of basic aspect of their ecology is still poor (Jeanne, 1991; Greene, 1991). With my thesis, I aimed to contribute to a better understanding of the common wasp (Vespula vulgaris) foraging ecology and organization of labour. With a particular attention to their foraging behaviour, I investigated the inter-individual variability among wasp workers and their cooperation.  My thesis shows evidence of information sharing and co-ordination in V. vulgaris foragers’ activity. In fact, the discovery and choice of resources by wasp foragers was assisted by information provided by experienced nestmates (Chapter 2). When resources known to portion of the workforce became newly available, the foraging effort of the whole colony increased. My observations of common wasps are hence consistent with foraging activation mechanisms and suggest piloting (in which one individual leads one or more nestmates to a resource) as a possible foraging recruitment mechanism in social wasps.  I found huge variation in lifetime activity, task performance, and survival among common wasp workers (Chapter 3). Some individuals specialized on alternative foraging tasks over their lifetime, and a minority individuals performed a disproportionately high number of foraging trips (elitism). Foragers appeared to become more successful with age, accomplishing more trips and carrying heavier fluid loads. Compared to smaller nestmates, larger wasps contributed more to the colony foraging economies. High mortality was associated with the beginning of the foraging activity, relative to lower mortality in more experienced workers.  I evaluated the performance of common wasp workers within the same insect colony, and found empirical support for the hypothesis that specialist foragers are more efficient than generalists (Chapter 4). In fact, V. vulgaris behavioural specialists performed more trips per foraging day and their trips tended to be shorter. Despite their more intense foraging effort, specialists lived longer than generalists.  I investigated the intra-colonial variation in the sting extension response (SER) of common wasps, measured as a proxy for individual aggressiveness (Chapter 5). I found that wasps vary greatly in their SER and that individuals change during their life. Aggressive individuals tended to become more docile, while docile individuals more aggressive. Older wasps tended to be more aggressive. Wasp size was not significantly related to the SER. Wasp foragers had a less pronounced sting extension than individuals previously involved in nest defence. For the same individual, the aggressive response was proportional to the intensity of the negative stimulus.</p>


Sign in / Sign up

Export Citation Format

Share Document