The effect of differential thermal expansion on residual stresses in a welded connection

1976 ◽  
Vol 11 (1) ◽  
pp. 56-61
Author(s):  
E Procter ◽  
E M Beaney

Two tests were conducted on a welded joint between a forging and a pipe adaptor, to investigate the effect of differential thermal expansion in the various parts of the joint, on the residual stress. The first test was carried out with the weld in the approved manufacturing stress relieved condition. The second test was carried out following normalizing and extended stress relief heat treatments. Strain gauge measurements were made on the heat affected zones and at various positions across the weld as the forging was heated and cooled through approximately 250° C. The apparent strain outputs of the gauges used at each location were determined from gauges attached to ‘stress free islands’ machined in the weld at the required postions Since the tests could only be carried out over a 250° C range the results were linearly extrapolated to cover the range of stress relief temperatures. It is shown that differential expansion can have significant effects on residual weld stresses as the structures are temperature cycled.

2016 ◽  
Vol 849 ◽  
pp. 281-286 ◽  
Author(s):  
Teng Ma ◽  
Xiao Yun Song ◽  
Wen Jun Ye ◽  
Song Xiao Hui ◽  
Rui Liu

The effects of stress-relief annealing on the distribution of residual stress and on the microstructure of TA15 (Ti-6.5Al-2Zr-1Mo-1V) alloy joints by electron beam welding (EBW) were investigated. The results indicated that the microstructure of welded joint presented a transitional change, i.e. basket-weave structure appeared in the fusion zone while equiaxed α structure in base metal. No significant change occurred in microstructure after annealing at 650°C for 2 h. The residual stress in fusion zone was mainly tensile stress and the maximum longitudinal stress value was 473MPa. After annealing, the residual stress near the welded joint exhibited a uniform distribution and the maximum stress droped to 150 MPa. The yield stress and tensile stress of the TA15 welding zone were 1016 MPa and 1100 MPa respectively.


2002 ◽  
Vol 124 (2) ◽  
pp. 207-214 ◽  
Author(s):  
Keiji Nakacho

Stress-relief annealing (SR treatment) is often applied to relieve welding residual stresses in the fabrication process of pressure vessels, etc. This study aims at development of an efficient method as simple as hand calculation to estimate reduction of residual stresses of a very thick welded joint by SR treatment. In the first report, an estimating method was developed for relaxation tests, in uniaxial stress state, at changing and constant temperatures because the stress relaxation phenomenon may be considerably similar to that observed in the SR treatment of a joint. In the second report, the stresses relaxed by SR treatment in a very thick welded joint were analyzed accurately by the finite element method based on thermal elastic-plastic creep theory. The characteristics of the changes of the welding residual stresses in multiaxial stress state were studied in detail for further development of the estimating method to SR treatment of a very thick welded joint, of which the stress state and boundary condition are very complex. In the third report, the estimating equations in multiaxial stress states were developed for the stress relaxation phenomenon in the thick welded joints, based on the foregoing characteristics. In this report, the applicability of the simple estimating method is investigated for SR treatment of the thick welded joint, by comparing the estimated results with the accurate ones obtained by FEM.


2017 ◽  
Vol 905 ◽  
pp. 31-39 ◽  
Author(s):  
Jeremy S. Robinson ◽  
Christopher E. Truman ◽  
Thilo Pirling ◽  
Tobias Panzner

The residual stresses in heat treated 7075 aluminium alloy blocks have been characterised using two neutron diffraction strain scanning instruments. The influence of uniaxial cold compression (1-10%) on relieving the residual stress has been determined. Increasing the magnitude of cold compression from 1 to 10% has been shown to have a beneficial effect on the residual stress distribution by reducing the range between the maximum and minimum residual stresses. The effect of over aging 7075 on residual stress has also been characterised using neutron diffraction and this was found to reduce the residual stress by 25-40%. A relationship between {311} peaks widths and amount of cold compression was also observed.


1996 ◽  
Vol 118 (3) ◽  
pp. 343-350 ◽  
Author(s):  
K. Nakacho ◽  
Y. Ueda

Stress-relief annealing (SR treatment) is often applied to relieve welding residual stresses in the fabrication process of pressure vessels, etc. This study aims at development of an efficient method as simple as hand calculation to estimate reduction of residual stresses of very thick welded joint by SR treatment. In this first report, an estimating method is developed for relaxation tests, in uniaxial stress state, at changing and constant temperatures because the stress relaxation phenomenon is very similar to that observed in the SR treatment of a joint. Using the various relations between stress and strains in the relaxation tests, estimating equations are formulated in order to simply calculate the change of the stress. The results obtained by applying the equations are compared with the highly accurate analytical result based on the finite element method. Both results show such a good coincidence that the appropriateness of the adopted method is confirmed. In the next report, this method is extended to SR treatment of a very thick welded joint, of which the stress state and boundary condition are very complex.


Author(s):  
B. Richard Bass ◽  
Paul T. Williams ◽  
Terry L. Dickson ◽  
Hilda B. Klasky

This paper describes further results from an ongoing study of a simplified engineering model that is intended to account for effects of clad residual stresses on the propensity for initiation of preexisting inner-surface flaws in a commercial nuclear reactor pressure vessel (RPV). The deposition of stainless steel cladding during fabrication of an RPV generates residual stresses in the cladding and the heat affected zone of the under-lying base metal. In addition to residual stress, thermal strains are generated by the differential thermal expansion (DTE) of the cladding and base material due to temperature changes during normal operation. A simplified model used in the ORNL-developed FAVOR probabilistic fracture mechanics (PFM) code accounts for the clad residual stress by incorporating a stress-free temperature (SFT) approach. At the stress-free temperature (Ts-free), the model assumes there is no thermal strain, i.e., the thermal expansion stresses and clad residual stresses offset each other. For normal cool-down transients applied to the RPV, interactions of the latter stresses generate additional crack driving forces on shallow, internal surface-breaking flaws near the clad/base metal interface; those flaws tend to dominate the RPV failure probability computed by FAVOR. In a previous report from this study (PVP2015-45086), finite element analysis was used to compare the stresses and stress-intensity factors (SIF) during a cool-down transient for two cases: (1) the existing SFT model of FAVOR, and (2) directly applied RPV clad residual stress (CRS) distribution obtained from empirical (hole-drilling) measurements made at room temperature on an RPV that was never put into service. However, those analyses were limited in scope and focused on a single flaw orientation. In this updated study, effects of CRS on the SIF histories computed for both circumferential and axial flaw orientations subjected to a cool-down transient were determined from an extended set of finite element analyses. Specifically, comparisons were made between results from applying CRS experimental data to ABAQUS two-dimensional, inner-surface flaw models and those generated by the FAVOR SFT model. It is demonstrated that the FAVOR-recommended SFT value of 488 °F produces conservatively high values of SIF relative to the use of CRS profiles in the ABAQUS models. For the vessel and flaw geometry and transient under study, the circumferential flaw (360° continuous) required a decrease of SFT down to 390 °F to match the CRS SIF histories. For the infinite axial flaw model, a decrease down to 300 °F matched the CRS SIF histories. Future plans are described to develop more general conclusions regarding the FAVOR model.


2018 ◽  
Vol 939 ◽  
pp. 31-37
Author(s):  
Adirek Baisukhan ◽  
Wasawat Nakkiew

Metal Inert Gas (MIG) welding process is a common welding process for carbon steels. During the cooling after welding, non-uniform cooling cause tensile residual stress on the surface of welded joint and, in most cases, in Heat Affected Zone (HAZ) also. The tensile residual stress is undesirable because it affects the strength and shorten the workpiece fatigue life. In order to convert the tensile residual stresses to desirable compressive residual stresses, the mechanical surface treatment like deep rolling process was used in this research. The surface residual stresses were measured by XRD machine with the sin2ψ method. For statistical analysis of significant factors used in deep rolling process, there are three factors each factor has two levels: rolling pressure, rolling speed and number of passes. Taguchi experimental design was used in conjunction with a deep rolling process to determine factors affected the surface residual stresses and surface microhardness. The results of the research showed that the most significant factors that affect the surface residual stress and surface microhardness were the number of passes, followed by the rolling pressure and the rolling speed, respectively. The maximum compressive residual stress measured at the welded joint was -521.5 MPa. The highest measured surface microhardness was 266.2 HV at the welded joint. The appropriated factors of deep rolling process for JIS SS400 MIG welding were rolling pressure 270 MPa, rolling speed 1,500 mm/min and number of passes 3 times.


2018 ◽  
Vol 939 ◽  
pp. 23-30 ◽  
Author(s):  
Adirek Baisukhan ◽  
Wasawat Nakkiew

Friction stir welding is most commonly used for joining aluminum alloy parts. After welding, residual stresses occurred in the welded joint caused by non-uniform cooling rate. Friction stir welding usually generates tensile residual stress inside the workpiece which affects the strength in addition to the fatigue life of materials. Compressive residual stress usually is beneficial and it can be introduced by mechanical surface treatment methods such as deep rolling, shot peening, laser shock peening, etc. In this research, deep rolling was used for inducing compressive residual stress on surface of friction stir welded joint. The residual stresses values were obtained from X-ray diffraction machine. Influence of three deep rolling process parameters: rolling pressure, rolling speed and rolling offset on surface residual stresses at the welded joint were investigated. Each factor had 2 levels (23 full factorial design). The statistical analysis result showed that the rolling pressure, rolling speed, rolling offset, interaction between rolling pressure and rolling speed, interaction between rolling speed and rolling offset were statistically significant factors, with the most compressive residual stress value approximately -391.6 MPa. The appropriated deep rolling process parameters on surface residual stress of AA7075-T651 aluminum alloy friction stir welded joint were 1) rolling pressure about 150 bar 2) rolling speed about 1,400 mm/min 3) rolling offset about 0.1 mm.


2001 ◽  
Vol 124 (1) ◽  
pp. 14-21 ◽  
Author(s):  
Keiji Nakacho

Stress-relief annealing (SR treatment) is often applied to relieve welding residual stresses in the fabrication process of pressure vessels, etc. This study aims at development of an efficient method as simple as hand calculation to estimate reduction of residual stresses of a very thick welded joint by SR treatment. In the first report, an estimating method was developed for relaxation tests, in uniaxial stress state, at changing and constant temperatures because the stress relaxation phenomenon is considerably similar to that observed in the SR treatment of a joint. In the second report, the stresses relaxed by SR treatment in a very thick welded joint were analyzed accurately by the finite element method based on thermal elastic-plastic creep theory. The characteristics of the changes of the welding residual stresses in multiaxial stress state were studied in detail for further development of the estimating method to SR treatment of a very thick welded joint, of which the stress state and boundary condition are very complex. In this report, the estimating equations in multiaxial stress states are developed for the stress relaxation phenomenon in the thick welded joints, based on the foregoing characteristics.


1987 ◽  
Vol 31 ◽  
pp. 255-260
Author(s):  
M. Bagby ◽  
SJ Marshall ◽  
GW Marshall

Residual stresses in dental castings are widely held to be the cause of distortion and change of fit in ceramic bonded to metal dental restorations. Residual stresses are thought to result from the casting process and from ceramic/metal mismatch of thermal expansion coefficients. Such stresses have not been confirmed experimentally. The purpose of this study was to measure residual stress with x-ray diffraction at the various porcelain application steps for two noble dental alloys with two dental opaque porcelains.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Vladimir Ivanovitch Monine ◽  
João da Cruz Payão Filho ◽  
Rodrigo Stohler Gonzaga ◽  
Elisa Kimus Dias Passos ◽  
Joaquim Teixeira de Assis

In the present work, residual stresses in nickel-based (Ni 625) superalloy weld metal of a 9%Ni steel-welded joint were measured by X-ray diffraction (XRD). This technique presents some difficulties in performing measurements in coarse and preferentially oriented weld metal microstructures. It is proposed a preliminary surface treatment by rotating steel wire brushing to perform the stress analysis through XRD technique possible for this kind of material. Stress measurements with proposed XRD technique showed that the stress state in Ni 625 weld metal on the outside surface of the welded joint is characterised by tensile stresses in the transverse and longitudinal directions, while compressive transverse and tensile longitudinal residual stresses are developed in the root pass region.


Sign in / Sign up

Export Citation Format

Share Document