The Dynamic Analysis of a 2-PRR Planar Parallel Mechanism

Author(s):  
L-P Wang ◽  
J-S Wang ◽  
J Chen

The article presents the inverse dynamics of a two-degrees-of-freedom planar parallel manipulator by the Newton-Euler approach. On the basis of the inverse dynamic model, the driving forces of actuators are simulated in different motion parameters. Further, the effects of inertia of each moving component to the driving forces are computed through the numerical method.

Author(s):  
Mohamed Afroun ◽  
Antoine Dequidt ◽  
Laurent Vermeiren

This article discusses the dynamic modeling for control of Gough–Stewart platform manipulator with special emphasis on universal–prismatic–spherical leg kinematics. Inverse dynamic model of these six degrees of freedom parallel manipulator robots is reviewed, while complete dynamics with true kinematics of universal–prismatic–spherical legs is compared with several models found in the literature. Most existing models have not taken into account some of the legs kinematical effects, namely the legs angular velocity around their axes and the internal singularities due to passive joints; some other used a simplified parameterization to describe the leg kinematics. Furthermore, some kinetic assumption can be used to reduce the computational burden. This article shows the effect of all these simplifications on the driving forces by simulating the different dynamic models for a commercial manipulator and for different sets of geometric and dynamic parameters of manipulator.


2010 ◽  
Vol 29-32 ◽  
pp. 744-749 ◽  
Author(s):  
Wen Hua Wang ◽  
Zhi You Feng ◽  
Ting Li Yang ◽  
Ce Zhang

Inverse dynamic equations of the 2UPS-2RPS mechanism are formulated by utilizing the virtual work principle. Kinematic analysis of the mechanism is presented, on the basis of which the Jacobian matrices of the limbs and the mechanism are deduced. By combining the dynamics of the limbs and the moving-platform, the inverse dynamic model of the mechanism is obtained. Finally a computer simulation is carried out to demonstrate the dynamic analysis of the moving platform.


2012 ◽  
Vol 229-231 ◽  
pp. 2280-2284
Author(s):  
Jian Xin Yang ◽  
Ben Zhao ◽  
Chun Li Li

Recently the parallel manipulator with less DOFs has attracted industry and academia, but the research on its dynamics is still an open problem. In this paper, the inverse dynamic of a spatial parallel manipulator with two translational degrees of freedom and one rotational degree of freedom is studied based on the Newton-Euler approach. The kinematics analysis is firstly performed in a closed form. The inverse dynamic equation of this manipulator is formulated by using the Lagrange multiplier approach and choosing the Cartesian position and orientation as the generalized coordinates. Finally a numerical example is given for the kinematic and dynamic simulation of this manipulator. The model will be useful to improve the design of the mechanical components and the control algorithm.


2010 ◽  
Vol 44-47 ◽  
pp. 1848-1852
Author(s):  
Xiao Rong Zhu ◽  
Hui Ping Shen ◽  
Wei Zhu ◽  
Lan Cai

The dynamic characteristics of the parallel mechanism depend strongly on the operating modes corresponding to different inverse solutions, but few of them have been involved with. In this paper, a new kind of 2-DOF parallel manipulator actuated horizontally by two parallel linear actuators is investigated. Firstly, the four inverse solutions of this manipulator are derived and analyzed; Secondly, the closed form inverse dynamic model is presented using the Lagrange approach based on the generalized system coordinates. An explicit formula of the equivalent moment of inertia, driving forces and consumed energy of the mechanism are investigated; Finally, the changes of equivalent moment of inertia, actuator force and energy consumption of the mechanism in different operating mode are analyzed through the dynamic numerical simulation. The results show that, for a given motion, the configuration and the operating modes have a significant influence on the equivalent moment of inertia and actuator force. The analysis provides necessary information for dynamic performance analysis and control of this parallel manipulator.


2014 ◽  
Vol 687-691 ◽  
pp. 610-615 ◽  
Author(s):  
Hui Liu ◽  
Li Wen Guan

High-dynamic flight simulator (HDFS), using a centrifuge as its motion base, is a machine utilized for simulating the acceleration environment associated with modern advanced tactical aircrafts. This paper models the HDFS as a robotic system with three rotational degrees of freedom. The forward and inverse dynamic formulations are carried out by the recursive Newton-Euler approach. The driving torques acting on the joints are determined on the basis of the inverse dynamic formulation. The formulation has been implemented in two numerical simulation examples, which are used for calculating the maximum torques of actuators and simulating the time-histories of kinematic and dynamic parameters of pure trapezoid Gz-load command profiles, respectively. The simulation results can be applied to the design of the control system. The dynamic modeling approach presented in this paper can also be generalized to some similar devices.


Author(s):  
M. Necip Sahinkaya ◽  
Yanzhi Li

Inverse dynamic analysis of a three degree of freedom parallel mechanism driven by three electrical motors is carried out to study the effect of motion speed on the system dynamics and control input requirements. Availability of inverse dynamics models offer many advantages, but controllers based on real-time inverse dynamic simulations are not practical for many applications due to computational limitations. An off-line linearisation of system and error dynamics based on the inverse dynamic analysis is developed. It is shown that accurate linear models can be obtained even at high motion speeds eliminating the need to use computationally intensive inverse dynamics models. A point-to-point motion path for the mechanism platform is formulated by using a third order exponential function. It is shown that the linearised model parameters vary significantly at high motion speeds, hence it is necessary to use adaptive controllers for high performance.


Author(s):  
S Kemal Ider

In planar parallel robots, limitations occur in the functional workspace because of interference of the legs with each other and because of drive singularities where the actuators lose control of the moving platform and the actuator forces grow without bounds. A 2-RPR (revolute, prismatic, revolute joints) planar parallel manipulator with two legs that minimizes the interference of the mechanical components is considered. Avoidance of the drive singularities is in general not desirable since it reduces the functional workspace. An inverse dynamics algorithm with singularity robustness is formulated allowing full utilization of the workspace. It is shown that if the trajectory is planned to satisfy certain conditions related to the consistency of the dynamic equations, the manipulator can pass through the drive singularities while the actuator forces remain stable. Furthermore, for finding the actuator forces in the vicinity of the singular positions a full rank modification of the dynamic equations is developed. A deployment motion is analysed to illustrate the proposed approach.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


2014 ◽  
Vol 592-594 ◽  
pp. 2303-2307
Author(s):  
M. Ganesh ◽  
R. Karthikeyan ◽  
Anjan Kumar Dash ◽  
M. Vikramadityan ◽  
R. Gopalachary

This paper presents a new design of a 3-RRR planar manipulator with non-planar legs. In contrast to the conventional 3-RRR planar parallel mechanism, the links are not planar. They are elevated above the X-Y plane and non planar legs are constructed. The kinematics of this model is realized on a common projected plane and traced back to its elevated position. The moment of inertia for the inclined links is computed. A stiffness model is established for the proposed design of 3-RRR manipulator and compared with a conventional 3-RRR planar manipulator. The analysis shows how the proposed design has better stiffness along all the three directions of motion.


Sign in / Sign up

Export Citation Format

Share Document