Remaining life of a vessel containing an internal corner crack under repeated thermal shock

Author(s):  
H W Ng ◽  
C K Lee

The remaining life for a hypothetical pressure vessel containing a defect which is subject to thermal shock has been calculated. Twelve cases of thermal shock loads of different severity characterized by the dimensionless parameters, Biot (B) and Fourier (F) numbers, were analysed by finite element modelling (FEM). The estimation of remaining life for each case was carried out based on the PD6493 defect assessment procedure (1). The effect of thermal shock on the crack growth rate was quantified showing that more severe shocks accelerate crack growth while less severe shocks may lead to slow growth or eventual crack arrest.

Author(s):  
Peter J. Bouchard ◽  
Lyndon Edwards ◽  
Anastasius G. Youtsos ◽  
Roger Dennis

Finite element weld residual stress modelling procedures involve complex non-linear analyses where many assumptions and approximations have to be made by the analyst. Weld modelling guidelines for inclusion in the R6 defect assessment procedure are in preparation and will be accompanied by a series of validation benchmarks that can be used to evaluate the accuracy of weld modelling procedures and assess their suitability for use in fracture assessments. It is intended to base one of the benchmarks on a stainless steel bead-on-plate weldment that has been extensively studied by members of Task Group 1 of the NeT European Network project. This paper uses round robin residual stress measurements from the NeT project to derive a statistically based ‘best estimate’ distribution of transverse stress passing through the wall-section at mid-length of the bead-on-plate weldment. The accuracy of a state-of-the-art residual stress prediction is benchmarked against the best estimate measurements using a root mean square error analysis and comparisons of decomposed components of stress. The appropriateness of using the predicted residual stresses in fracture assessments is assessed by comparing stress intensity factors based on the measured and predicted distributions of stress. The results from these studies will be used to help establish accuracy targets and acceptance criteria for the welding benchmark.


1989 ◽  
Vol 111 (1) ◽  
pp. 61-67 ◽  
Author(s):  
F. Erdogan

The problem of slow crack growth under residual stresses and externally applied loads in plates is considered. Even though the technique developed to treat the problem is quite general, in the solution given it is assumed that the plate contains a surface crack and the residual stresses are compressive near and at the surfaces and tensile in the interior. The crack would start growing subcritically when the stress intensity factor exceeds a threshold value. Initially the crack faces near the plate surface would remain closed. A crack-contact problem would, therefore, have to be solved to calculate the stress intensity factor. Depending on the relative magnitudes of the residual and applied stresses and the threshold and critical stress intensity factors, the subcritically growing crack would either be arrested or become unstable. The problem is solved and examples showing the time to crack arrest or failure are discussed.


Author(s):  
B. Prabel ◽  
S. Marie ◽  
A. Combescure

In the frame of analysis of the pressure thermal shock in a PWR RVP and the associated R&D activities, some developments are performed at CEA on the dynamic brittle propagation and crack arrest. This paper presents a PhD work on the modeling of the dynamic brittle crack growth. For the analyses, an important experimental work is performed on different geometries using a French RPV ferritic steel: Compact Tension specimens with different thickness, isothermal rings under compression with different positions of the initial defect to study a mixed mode configuration, and a ring submitted to thermal shock. The first part of this paper details the test conditions and main results. To propose an accurate interpretation of the crack growth, a viscous-elastic-plastic dynamic model is used. The strain rate influence is taken into account based on Cowper-Symond’s law (characterization was made from Split Hopkinson Pressure Bar tests). To model the crack propagation in the Finite Element calculation, eXtended Finite Element Method (X-FEM) is used. The implementation of these specific elements in the CEA F.E. software CAST3M is described in the second part of this paper. This numerical technique avoids re-meshing, because the crack progress is directly incorporated in the degrees of freedom of the elements crossed by the crack. The last part of this paper compares the F.E. predictions to the experimental measurements using different criteria. In particular, we focused on a RKR (Ritchie-Knott-Rice) like criterion using a critical principal stress in the front of the crack tip during the dynamic crack extension. Critical stress is found to depend on crack speed, or equivalently on strain rate. Good results are reported concerning predictive simulations.


Author(s):  
Chang-Young Oh ◽  
Yun-Jae Kim ◽  
R. A. Ainsworth

This paper addresses load order effects on elastic-plastic J estimation under combined mechanical and thermal loads for circumferentially cracked pipes. The load order effects, for various thermal gradient types and mechanical loading, are evaluated for a range of magnitudes of the loadings, crack sizes and material hardening. Variations of elastic-plastic J obtained by finite element analysis are compared with existing and proposed methods for use with the R6 defect assessment procedure. The load order effects are presented on the R6 failure assessment diagram (FAD) by calculating the two parameters Kr and Lr from the finite element results. It is shown that there are significant load order effects at large secondary stress cases but these are successfully treated by simplified methods proposed for use with R6.


2014 ◽  
Vol 31 (9) ◽  
pp. 094601 ◽  
Author(s):  
Yan-Wei Wang ◽  
He-Long Yu ◽  
Hong-Xiang Tang ◽  
Xue Feng
Keyword(s):  

2014 ◽  
Vol 64 ◽  
pp. 67-73 ◽  
Author(s):  
D. Chandra ◽  
J. Purbolaksono ◽  
Y. Nukman ◽  
H.L. Liew ◽  
S. Ramesh ◽  
...  

Author(s):  
Jiaxi Zhao ◽  
Weixing Chen ◽  
Sean Keane ◽  
Jenny Been ◽  
Greg Van Boven

This investigation primarily focused on the validation of the software being developed for crack growth and remaining life prediction using SCADA data. A total of nine pressure spectra, four for oil pipelines and five for gas pipelines, have been collected and used as inputs for the software. It was found that these spectra could be categorized as the underload-, the meanload- and the overload-dominant spectra; each of them have shown different effects on crack growth: the underload spectra, typical of pressure fluctuations at the discharging sites, are most susceptible to crack growth because of load interactions between the minor pressure fluctuations and the unload cycles; while the overload spectra, often found at the suction site, have exhibited retarded crack growth due to the retardation effects caused by overloading. The relative severity of the load interactions in terms of crack growth rate for a given spectrum was quantified using a parameter termed as the Spectrum Factor. A Spectrum Factor greater than one indicates the enhanced crack growth rate by load interactions, such as the case where unloading is frequently present in the pressure spectra, while a Spectrum Factor lower than one may be associated with a retarded crack growth, which can be seen in pressure spectra with predominant overloading events. The predictions made by the models being developed were also compared with those made by the rainflow counting method. The software allows for the SCADA/pressure fluctuation data, in excel spreadsheet format, to be directly analyzed producing a projected remaining life of the pipeline based on the past pressure fluctuations and the assumed future pressure fluctuations.


Sign in / Sign up

Export Citation Format

Share Document