Unsteady viscous flow model on moving the domain through a stenotic artery

Author(s):  
E Y K Ng ◽  
W L Siauw

An unsteady Navier-Stokes (N-S) solver based on the method of operator splitting and artificial compressibility has been studied for the moving boundary problem to simulate blood flow through a compliant vessel. Galerkin finite element analysis is used to discretize the governing equations. The model has been applied to a time-varying computational domain (two-dimensional tube) as a test case for validation. Consideration has been given to retaining the space conservation property. The same code is then applied to a hypothetical critical high-pressure gradient over a short length of blood vessel based on the spring and dashpot model. The governing equation for the blood vessel is based on two-dimensional dynamic thin-shell theory that takes into account the curvature of the stenotic portion of the vessel. Progressing the solution towards steady state is considered, as the main objective is to show the viability of the current technique for fluid/structure interactions. Preliminary results of the wall velocity and displacement based on steady state prediction agree well with data in the literature. Results, such as the streamlines, wall pressures and wall shear stress depict the possible progression of arterial disease.

2000 ◽  
Vol 411 ◽  
pp. 325-350 ◽  
Author(s):  
SAEED MORTAZAVI ◽  
GRÉTAR TRYGGVASON

The cross-stream migration of a deformable drop in two-dimensional Hagen–Poiseuille flow at finite Reynolds numbers is studied numerically. In the limit of a small Reynolds number (< 1), the motion of the drop depends strongly on the ratio of the viscosity of the drop fluid to the viscosity of the suspending fluid. For viscosity ratio 0.125 a drop moves toward the centre of the channel, while for ratio 1.0 it moves away from the centre until halted by wall repulsion. The rate of migration increases with the deformability of the drop. At higher Reynolds numbers (5–50), the drop either moves to an equilibrium lateral position about halfway between the centreline and the wall – according to the so-called Segre–Silberberg effect or it undergoes oscillatory motion. The steady-state position depends only weakly on the various physical parameters of the flow, but the length of the transient oscillations increases as the Reynolds number is raised, or the density of the drop is increased, or the viscosity of the drop is decreased. Once the Reynolds number is high enough, the oscillations appear to persist forever and no steady state is observed. The numerical results are in good agreement with experimental observations, especially for drops that reach a steady-state lateral position. Most of the simulations assume that the flow is two-dimensional. A few simulations of three-dimensional flows for a modest Reynolds number (Re = 10), and a small computational domain, confirm the behaviour seen in two dimensions. The equilibrium position of the three-dimensional drop is close to that predicted in the simulations of two-dimensional flow.


1993 ◽  
Vol 115 (4A) ◽  
pp. 374-379 ◽  
Author(s):  
Anne Weill ◽  
Avraham Shitzer ◽  
Pinhas Bar-Yoseph

A finite element code was developed for the analysis of the temperature field around two adjacent cylindrical cryo-probes. The two-phase, two-dimensional Stefan problem is solved using a moving boundary approach and space-time finite elements. Solution of one-cryo-probe problem compared well with an existing analytic solution. The two-cryo-probes problem yielded reasonable results. The program simulated the nonsymmetric activation of two probes and the merging of the two freezing fronts in the case of symmetric activation.


2003 ◽  
Vol 31 (3) ◽  
pp. 189-202 ◽  
Author(s):  
D. Zheng

Abstract A procedure based on steady state rolling contact Finite Element Analysis (FEM) has been developed to predict tire cross section tread wear profile under specified vehicle driving conditions. This procedure not only considers the tire construction effects, it also includes the effects of materials, vehicle setup, test course, and driver's driving style. In this algorithm, the vehicle driving conditions are represented by the vehicle acceleration histogram. Vehicle dynamic simulations are done to transform the acceleration histogram into tire loading condition distributions for each tire position. Tire weight loss rates for different vehicle accelerations are generated based on a steady state rolling contact simulation algorithm. Combining the weight loss rate and the vehicle acceleration histogram, nine typical tire loading conditions are chosen with different weight factors to represent tire usage conditions. It is discovered that the tire tread wear rate profile is changing continuously as the tire is worn. Simulation of a new tire alone cannot be used to predict the tire cross-section tread wear profile. For this reason, an incremental tread wear simulation procedure is performed to predict the tire cross section tread wear profile. Compared with actual tire cross-section tread wear profiles, good results are obtained from the simulations.


2021 ◽  
Vol 31 (4) ◽  
pp. 345-348
Author(s):  
Yasuhide Tsuji ◽  
Keita Morimoto ◽  
Akito Iguchi ◽  
Tatsuya Kashiwa ◽  
Shinji Nishiwaki

Author(s):  
Y Xu ◽  
B Liu ◽  
J Liu ◽  
S Riemenschneider

Empirical mode decomposition (EMD) is a powerful tool for analysis of non-stationary and nonlinear signals, and has drawn significant attention in various engineering application areas. This paper presents a finite element-based EMD method for two-dimensional data analysis. Specifically, we represent the local mean surface of the data, a key step in EMD, as a linear combination of a set of two-dimensional linear basis functions smoothed with bi-cubic spline interpolation. The coefficients of the basis functions in the linear combination are obtained from the local extrema of the data using a generalized low-pass filter. By taking advantage of the principle of finite-element analysis, we develop a fast algorithm for implementation of the EMD. The proposed method provides an effective approach to overcome several challenging difficulties in extending the original one-dimensional EMD to the two-dimensional EMD. Numerical experiments using both simulated and practical texture images show that the proposed method works well.


Sign in / Sign up

Export Citation Format

Share Document