Novel multirate control strategy for piezoelectric actuators

Author(s):  
M Zareinejad ◽  
S M Rezaei ◽  
H H Najafabadi ◽  
S S Ghidary ◽  
A Abdullah ◽  
...  

In this article, a novel control method is proposed for feedforward compensation of hysteresis non-linearity in various frequency ranges. By integrating a multirate hysteresis compensator controller with PID feedback control, a combined controller is developed and experimentally validated for a piezoelectric micro-positioning system. Piezoelectric materials show non-linear hysteresis behaviour when they experience an electrical field. A fundamental study of a piezoelectric actuator (PEA) shows that the hysteresis effect deteriorates the tracking performance of the PEA. This paper presents a non-linear model which quantifies the hysteresis non-linearity generated in PEAs in response to the applied driving voltages. The tracking control method is based on multirate feedforward control. The proposed multirate control method uses an inverse modified Prandtl-Ishlinskii operator to cancel out hysteresis non-linearity. The controller structure has a simple design and can be quickly identified. The control system is capable of achieving suitable tracking control and it is convenient to use and can be quickly applied to practical PEA applications. Experimental results are provided to verify the efficiency of the proposed method.

Author(s):  
Masayoshi Tomizuka ◽  
Liting Sun

Abstract Zero phase error tracking (ZPET) control has gained popularity as a simple yet effective feedforward control method for tracking time varying desired trajectories by the plant output. In this paper, we will show that the zero-order hold equivalent of continuous time transfer function, i.e. pulse transfer function, naturally has a property to realize zero phase effort tracking. This property is exploited to realize a simple implementation of zero phase error tracking control. The effectiveness of the proposed approach is demonstrated by simulations.


Author(s):  
Wei Zhu ◽  
Feifei Liu ◽  
Fufeng Yang ◽  
Xiaoting Rui

A controller composed of a feed-forward loop based on a novel dynamic Prandtl–Ishlinskii (P-I) model and a PID feedback control loop is developed to support a 3-dimensional piezo-driven micro-positioning system for high-bandwidth tracking control. By considering the dynamic characteristics of the power amplifier, the dynamic P-I model can accurately describe the rate-dependent hysteresis of piezoelectric stack actuators (PSAs). To ensure that the hysteresis model is independent of system load, the P-I hysteresis operator in that model characterizes the relationship between the output force and the input voltage of PSAs. The dynamics equation of the mechanical is established by using the cutoff modal method. The feedforward control is designed based on the dynamic hysteresis model to reduce the rate-dependent hysteresis. The PID control is incorporated with the feedforward control to increase the tracking accuracy. Experimental results indicate that the controller can overcome the hysteresis efficiently and preserve good positioning accuracy in 1–100 Hz bandwidth. Just by introducing the dynamic characteristics of the power amplifier, which can be expressed as a first-order differential equation, the P-I model can accurately describe the rate-dependent hysteresis of the PSA, which provides a simple method to describe and control piezoelectric actuators and piezo-driven systems in a wide frequency.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shiping Jiang ◽  
Bin Xu ◽  
Shuxin Liu ◽  
Wei Zhu

The main challenge of the galfenol actuator for high-precision positioning is the inherent nonsmooth hysteresis, which may lead to undesirable inaccuracies or oscillations and even instability. The primary aim of this study is to develop a tracking control method to precisely control the output displacement of a galfenol-actuated nanopositioning stage using feedforward control with a disturbance observer. In order to accurately describe the rate-dependent hysteresis, considering the dynamic behavior of the power amplifier, a novel dynamic model is put forward. Then, a developed controller is designed. In this controller, a feedforward control is developed to compensate the rate-dependent hysteresis, and a disturbance observer is employed to restrain disturbances, high-order unmodeled dynamics, and hysteresis compensation error. The comparative experimental results show that the proposed control method can significantly improve the positioning accuracy and suppress disturbances. This research can be applied in various micro and nanopositioning and vibration control fields.


2019 ◽  
Vol 12 (12) ◽  
pp. 3131-3140 ◽  
Author(s):  
Jiang You ◽  
Mahinda Vilathgamuwa ◽  
Negareh Ghasemi ◽  
Fanrong Meng

2017 ◽  
Vol 40 (7) ◽  
pp. 2151-2166 ◽  
Author(s):  
Yong Li ◽  
Qingfeng Wang

Proportional pressure-reducing valves (PPRVs) are typical proportional valves widely used in the hydraulic industry because they are inexpensive, not prone to malfunction, easy to handle and service. However, they suffer from performance degradations due to the existence of dead zone and hysteresis. An effective control method should be developed to improve the performance of PPRVs, as their characteristics significantly affect the entire hydraulic system. This article focuses on high-performance pressure-tracking control of a PPRV with dead zone and hysteresis. A non-linear phenomenological model is put forward to describe the characteristics of dead zone and hysteresis, as well as dynamic behaviour of the PPRV. The proposed phenomenological model is described using an ideal third-order linear model preceded by a dead zone term and a hysteresis term. To handle parameter uncertainties and uncertain non-linearities in the phenomenological model, an adaptive robust controller is synthesized without constructing a dead zone inverse or hysteresis inverse. The developed controller guarantees bounded pressure-tracking error and precise steady-state tracking accuracy. Comparative simulations and experiments with different pressure trajectories are carried out to verify the effectiveness of the proposed method. Both simulation and experimental results show that with the proposed adaptive robust control (ARC) approach, the non-linear dead zone and hysteresis may be well compensated and improved pressure-tracking performance achieved.


Sign in / Sign up

Export Citation Format

Share Document