A simplified thermohydrodynamic stability analysis of journal bearings

Author(s):  
S Singhal ◽  
M. M. Khonsari

This work investigates the stability of a journal bearing system, including the effects of inlet viscosity. Simplified thermohydrodynamic design charts for the rapid prediction of stiffness coefficients, damping coefficients, and threshold speed have been developed. This investigation reveals that the inlet viscosity has a pronounced influence on the bearing dynamic coefficients of the lubricating oil film. This investigation also reveals that it is possible to stabilize a journal bearing either by heating the oil or by cooling the oil depending on the operating region.

1989 ◽  
Vol 111 (3) ◽  
pp. 426-429 ◽  
Author(s):  
T. Kato ◽  
Y. Hori

A computer program for calculating dynamic coefficients of journal bearings is necessary in designing fluid film journal bearings and an accuracy of the program is sometimes checked by the relation that the cross terms of linear damping coefficients of journal bearings are equal to each other, namely “Cxy = Cyx”. However, the condition for this relation has not been clear. This paper shows that the relation “Cxy = Cyx” holds in any type of finite width journal bearing when these are calculated under the following condition: (I) The governing Reynolds equation is linear in pressure or regarded as linear in numerical calculations; (II) Film thickness is given by h = c (1 + κcosθ); and (III) Boundary condition is homogeneous such as p=0 or dp/dn=0, where n denotes a normal to the boundary.


2003 ◽  
Vol 125 (2) ◽  
pp. 291-300 ◽  
Author(s):  
G. H. Jang ◽  
J. W. Yoon

This paper presents an analytical method to investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill’s infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.


1978 ◽  
Vol 20 (5) ◽  
pp. 291-296 ◽  
Author(s):  
N. S. Rao ◽  
B. C. Majumdar

A periodic (displacement) disturbance is imposed on an aerostatic, porous, journal bearing of finite length under steady-state conditions. The dynamic pressure distribution is obtained by a pressure perturbation analysis of Reynolds equation and a modified flow continuity equation in a porous medium. Dynamic stiffness and damping coefficients for different operating conditions are calculated numerically, using a digital computer, and presented in the form of design charts.


Author(s):  
Fanming Meng ◽  
Yifei Zhang ◽  
Linlin Su ◽  
Haiyang Yu ◽  
Yong Zheng

An investigation of the compound texture effect on the dynamic characteristics of the journal bearing film is conducted. In this work, eight dynamic coefficients of the compound textured journal bearing and critical speed of the rotor supported by textured bearings are obtained and compared. Meanwhile, the elastic deformation effect of the bearing and rotor is obtained using the continuous convolution fast Fourier transform (CC-FFT) method. It is found that the reasonably arranged compound texture brings out an obvious increment in the direct stiffness coefficients and damping coefficients compared with the simple one, which results in the high critical speed of the bearing-rotor system. The above changes are close to the texture distribution, second-layered texture length, and width-length ratios of the compound texture. Moreover, there exists a critical compound texture depth to improve the critical speed of the bearing-rotor system.


Author(s):  
Jianbo Zhang ◽  
Han Zhao ◽  
Donglin Zou ◽  
Na Ta ◽  
Zhushi Rao

Under misalignment condition, the film thickness distribution of aerostatic journal bearings is changed comparing with condition without misalignment, which results in the change of performances of aerostatic journal bearings. In the paper, the effects of misalignment along two perpendicular directions (along the vertical direction θ y and along the horizontal direction θ x) on the dynamic coefficients and stability thresholds of both critical whirl ratio and critical inertial force calculated by the motion equation of rigid rotor-aerostatic journal bearing system are studied comparatively. The results indicate that the dynamic coefficients, critical whirl ratio, and critical inertial force are more sensitive to θ x compared with θ y. Moreover, the stability threshold of whirl ratio reduces with increasing the misalignment degree, while stability threshold of inertial force increases with increasing the misalignment degree.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mohammad Miraskari ◽  
Farzad Hemmati ◽  
Mohamed S. Gadala

To determine the bifurcation types in a rotor-bearing system, it is required to find higher order derivatives of the bearing forces with respect to journal velocity and position. As closed-form expressions for journal bearing force are not generally available, Hopf bifurcation studies of rotor-bearing systems have been limited to simple geometries and cavitation models. To solve this problem, an alternative nonlinear coefficient-based method for representing the bearing force is presented in this study. A flexible rotor-bearing system is presented for which bearing force is modeled with linear and nonlinear dynamic coefficients. The proposed nonlinear coefficient-based model was found to be successful in predicting the bifurcation types of the system as well as predicting the system dynamics and trajectories at spin speeds below and above the threshold speed of instability.


2019 ◽  
Vol 71 (1) ◽  
pp. 31-39
Author(s):  
Subrata Das ◽  
Sisir Kumar Guha

Purpose The purpose of this paper is to investigate the effect of turbulence on the stability characteristics of finite hydrodynamic journal bearing lubricated with micropolar fluid. Design/methodology/approach The non-dimensional transient Reynolds equation has been solved to obtain the non-dimensional pressure field which in turn used to obtain the load carrying capacity of the bearing. The second-order equations of motion applicable for journal bearing system have been solved using fourth-order Runge–Kutta method to obtain the stability characteristics. Findings It has been observed that turbulence has adverse effect on stability and the whirl ratio at laminar flow condition has the lowest value. Practical implications The paper provides the stability characteristics of the finite journal bearing lubricated with micropolar fluid operating in turbulent regime which is very common in practical applications. Originality/value Non-linear stability analysis of micropolar fluid lubricated journal bearing operating in turbulent regime has not been reported in literatures so far. This paper is an effort to address the problem of non-linear stability of journal bearings under micropolar lubrication with turbulent effect. The results obtained provide useful information for designing the journal bearing system for high speed applications.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Rodrigo Nicoletti

This work presents an optimization procedure to find bearing profiles that improve stability margins of rotor-bearing systems. The profile is defined by control points and cubic splines. Stability margins are estimated using bearing dynamic coefficients, and obtained solutions are analyzed as a function of the number of control points and of the Sommerfeld number at optimization. Results show the feasibility of finding shapes for the bearing that significantly improve the stability margins. Some of the obtained solutions overcome the stability margins of conventional bearings, such as the journal bearing and preloaded bearings with 0.5 and 0.67 preload. A time domain simulation of a flexible shaft rotating system supported by such bearings corroborates the results.


1979 ◽  
Vol 21 (5) ◽  
pp. 345-351 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar ◽  
J. S. Rao

A theoretical analysis of the steady-state and dynamic characteristics of multi-recess hybrid oil journal bearings is presented. A perturbation theory for small vibrations is used to solve an incompressible, finite journal bearing with a time-dependent term. Load capacity, attitude angle, friction parameter, stiffness and damping coefficients are evaluated for a capillary-compensated bearing.


Author(s):  
Katsuhisa Fujita ◽  
Atsuhiko Shintani ◽  
Koji Yoshioka ◽  
Kouhei Okuno ◽  
Hiroaki Tanaka ◽  
...  

Recently, in many areas such as computers and information equipments etc., the fluid journal bearings are required to rotate at higher speed. To satisfy this requirement, the strictly stability analysis of the journal is indispensable. In this paper, we investigate the stability analysis of the dynamic behavior of the fluid plain journal bearing with an incompressible fluid considering the nonlinear terms of fluid forces. The stability analysis is examined by the numerical simulations on each model of a rigid rotor and a flexible rotor. The stable regions by nonlinear analysis are compared with the regions by classical linear analysis. Performing the nonlinear simulation analysis, it becomes clear that there is rather a stable region which amplitude does not grow up abruptly, and this phenomenon can not only be pointed out, but also is judged to be unstable by linear stable analysis. Finally, the experiment using actual bearings is performed and compared with the numerical results.


Sign in / Sign up

Export Citation Format

Share Document