Dynamic Stability of Wave-Convection Transport

1982 ◽  
Vol 24 (4) ◽  
pp. 225-227
Author(s):  
M. D. Greenberg ◽  
C. Y. Harrell

A flexible inextensible horizontal belt is assumed to be formed, by closely spaced vertical push rods, into a traveling sine wave. A spherical object resting at the bottom of a trough will tend to be convected with the trough as the wave travels. The dynamic stability of such wave-convection transport is considered. Assuming the wave to be shallow, the governing nonlinear equations are expanded (through second order) in the ‘shallowness parameter’, and thus reduced to a single equation, essentially of forced Duffing type, which is integrated numerically, over the parameter space of practical interest, to yield a stability criterion.

Author(s):  
Hongyang Hu ◽  
Ming Feng ◽  
Tianming Ren

The upscaling of turbomachinery using gas foil journal bearings (GFJBs) is limited because of their limited load capacity and dynamic stability. The improvement potential of shim foil inserted under the bump foil of such bearings is investigated in terms of better bearing performance. The arch height difference Δ hb between the shim foil and bump foil can be zero or not to attain the different effect. By considering the local hardening structural stiffness and an Initial installation clearance due to the shim foil, the static and dynamic characteristics of the novel bearing were calculated through the finite difference method (FDM) and perturbation method, respectively. In the analysis, a modified bump stiffness model considering the variable foil thickness was established, and a 2 D thick plate model was adopted for the top foil. The characteristics of novel GFJB with and without preload were compared with the traditional bearing. The results indicate that the load capacity and direct stiffness of the novel GFJB with shim foil can be increased largely, especially when there is a preload (Δ hb≠0). And the improvement is reinforced as the increment of Δ hb. Moreover, the stability threshold speed ( STS) of rotor supported by the novel GFJBs is enhanced by the preload, which means better stability. In addition, an air compressor test has also been conducted to verify the improved supporting performance of novel bearings. Based on this study it is convinced that the addition of shim foil under a GFJB's bump foil can be of practical interest in the quest of enhanced load capacity and dynamic stability. Moreover, the installation of shim foil is not affected by the working environment and could even be retrofited on the existing GFJBs.


1994 ◽  
Vol 26 (2) ◽  
pp. 456-473 ◽  
Author(s):  
J. A. Morrison

In this paper a particular loss network consisting of two links with C1 and C2 circuits, respectively, and two fixed routes, is investigated. A call on route 1 uses a circuit from both links, and a call on route 2 uses a circuit from only the second link. Calls requesting routes 1 and 2 arrive as independent Poisson streams. A call requesting route 1 is blocked and lost if there are no free circuits on either link, and a call requesting route 2 is blocked and lost if there is no free circuit on the second link. Otherwise the call is connected and holds a circuit from each link on its route for the holding period of the call.The case in which the capacities C1, and C2, and the traffic intensities v1, and v2, all become large of O(N) where N » 1, but with their ratios fixed, is considered. The loss probabilities L1 and L2 for calls requesting routes 1 and 2, respectively, are investigated. The asymptotic behavior of L1 and L2 as N→ ∞ is determined with the help of double contour integral representations and saddlepoint approximations. The results differ in various regions of the parameter space (C1, C2, v1, v2). In some of these results the loss probabilities are given in terms of the Erlang loss function, with appropriate arguments, to within an exponentially small relative error. The results provide new information when the loss probabilities are exponentially small in N. This situation is of practical interest, e.g. in cellular systems, and in asynchronous transfer mode networks, where very small loss probabilities are desired.The accuracy of the Erlang fixed-point approximations to the loss probabilities is also investigated. In particular, it is shown that the fixed-point approximation E2 to L2 is inaccurate in a certain region of the parameter space, since L2 « E2 there. On the other hand, in some regions of the parameter space the fixed-point approximations to both L1 and L2 are accurate to within an exponentially small relative error.


1979 ◽  
Vol 46 (2) ◽  
pp. 423-426 ◽  
Author(s):  
I. Fawzy

Dynamic stability of a general nonconservative system of n degrees of freedom is investigated. A sufficient and necessary condition for the stability of such a system is developed. It represents a simplified criterion based on the famous Lyapunov’s theorem which is proved afresh using λ-matrix methods only. When this criterion is adopted, it reduces the number of equations in Lyapunov’s method to less than half. A systematic procedure is then suggested for the stability investigation and its use is illustrated through a numerical example at the end of the paper.


1964 ◽  
Vol 20 (4) ◽  
pp. 593-623 ◽  
Author(s):  
R. T. Davis ◽  
I. Flügge-Lotz

First- and second-order boundary-layer theory are examined in detail for some specific flow cases of practical interest. These cases are for flows over blunt axisymmetric bodies in hypersonic high-altitude (or low density) flow where second-order boundary-layer quantities may become important. These cases consist of flow over a hyperboloid and a paraboloid both with free-stream Mach number infinity and flow over a sphere at free-stream Mach number 10. The method employed in finding the solutions is an implicit finite-difference scheme. It is found to exhibit both stability and accuracy in the examples computed. The method consists of starting near the stagnation-point of a blunt body and marching downstream along the body surface. Several interesting properties of the boundary layer are pointed out, such as the nature of some second-order boundary-layer quantities far downstream in the flow past a sphere and the effect of strong vorticity interaction on the second-order boundary layer in the flow past a hyperboloid. In several of the flow cases, results are compared with other theories and experiments.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Francesca Cuteri ◽  
Owe Philipsen ◽  
Alessandro Sciarra

Abstract The nature of the QCD chiral phase transition in the limit of vanishing quark masses has remained elusive for a long time, since it cannot be simulated directly on the lattice and is strongly cutoff-dependent. We report on a comprehensive ongoing study using unimproved staggered fermions with Nf ∈ [2, 8] mass-degenerate flavours on Nτ ∈ {4, 6, 8} lattices, in which we locate the chiral critical surface separating regions with first-order transitions from crossover regions in the bare parameter space of the lattice theory. Employing the fact that it terminates in a tricritical line, this surface can be extrapolated to the chiral limit using tricritical scaling with known exponents. Knowing the order of the transitions in the lattice parameter space, conclusions for approaching the continuum chiral limit in the proper order can be drawn. While a narrow first-order region cannot be ruled out, we find initial evidence consistent with a second-order chiral transition in all massless theories with Nf ≤ 6, and possibly up to the onset of the conformal window at 9 ≲ $$ {N}_{\mathrm{f}}^{\ast } $$ N f ∗ ≲ 12. A reanalysis of already published $$ \mathcal{O} $$ O (a)-improved Nf = 3 Wilson data on Nτ ∈ [4, 12] is also consistent with tricritical scaling, and the associated change from first to second-order on the way to the continuum chiral limit. We discuss a modified Columbia plot and a phase diagram for many-flavour QCD that reflect these possible features.


2021 ◽  
Vol 923 (1) ◽  
pp. 118
Author(s):  
Lingfeng Wei ◽  
Smadar Naoz ◽  
Thea Faridani ◽  
Will M. Farr

Abstract Multiplanetary systems are prevalent in our Galaxy. The long-term stability of such systems may be disrupted if a distant inclined companion excites the eccentricity and inclination of the inner planets via the eccentric Kozai–Lidov mechanism. However, the star–planet and the planet–planet interactions can help stabilize the system. In this work, we extend the previous stability criterion that only considered the companion–planet and planet–planet interactions by also accounting for short-range forces or effects, specifically, relativistic precession induced by the host star. A general analytical stability criterion is developed for planetary systems with N inner planets and a relatively distant inclined perturber by comparing precession rates of relevant dynamical effects. Furthermore, we demonstrate as examples that in systems with two and three inner planets, the analytical criterion is consistent with numerical simulations using a combination of Gauss’s averaging method and direct N-body integration. Finally, the criterion is applied to observed systems, constraining the orbital parameter space of a possible undiscovered companion. This new stability criterion extends the parameter space in which an inclined companion of multiplanet systems can inhabit.


Sign in / Sign up

Export Citation Format

Share Document