Water Hammer in a Pumping Main and its Prevention

1951 ◽  
Vol 165 (1) ◽  
pp. 43-52 ◽  
Author(s):  
A. M. Binnie ◽  
D. G. Thackrah

An earlier investigation has been continued on the protection of a rising water main against the consequences of a sudden interruption in the supply. In place of the air bottle previously tried, an automatic air-inlet valve was placed at the lower end of the pipe-line. Experiments on a laboratory scale showed that the cushion of air thus introduced brought the returning water column to rest without sound or shock. Theoretical calculations of maximum pressure and of air drawn in were verified. The lift of the pipe-line being small compared with its length, it was found that, over the range of velocity usually employed, the maximum pressure set up by the returning column diminished as the initial velocity of the interrupted supply was increased. With no protective device in use, a series of violent impacts took place owing to the column striking and rebounding from the closed valve at the lower end of the pipe-line. An electronic gauge, having a very high natural frequency, was used to measure the magnitude and duration of the shock pressures. Its indications were generally in accord with an analysis based on the usual theory of pressure waves, but the maximum pressures actually recorded somewhat exceeded the theoretical estimates, owing to the existence of additional pressure fluctuations caused by reflections from bends, sockets, and other discontinuities in the pipe-line. The insertion of a spring-loaded relief valve only slightly reduced the shock pressures.

2001 ◽  
Vol 35 (4) ◽  
pp. 33-45 ◽  
Author(s):  
Peter Hogarth

Between 23rd and 25th July 2001 GeoSwath, a high specification shallow water wide swath bathymetry system, was used to survey the entire Portsmouth NH Harbor area. This paper deals with the results of this survey, illustrating the potential for significant reductions in the high costs, which have prevented widespread proliferation of Swath Bathymetry systems to date. Data, including a complete DTM gridded to 1 m resolution, will be presented and discussed in detail. These results show that the system is very easy to set up and use, requires greatly reduced boat and processing time, whilst offering high accuracy and very high coverage and resolution when used in a real-world survey of a dynamic harbor environment.


2005 ◽  
Vol 127 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a ringlike wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions, namely, one with and one without this ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


2021 ◽  
Author(s):  
Qiongxiao Wu ◽  
Jianjun Wang ◽  
Jingming Chen ◽  
Pengzheng Li

Abstract Based on the one-dimensional simulation model of lubricating oil system is established and analyzed by using FLOWMASTER software, this paper proposes a new method of optimizing lubricating oil system by PID technology. Ensure that the configuration requirements and control strategies of the relevant accessories of the simulation model are satisfied with the design requirements. Firstly, by simulating lubricating oil pressure fluctuation and lubricating oil flow distribution under Open/Close Valve in different opening and closing time, the optimal opening/closing time of Open/Close Valve is determined to be 0.2 s and 0.5 s respectively. Secondly, by writing the controller script file combined with a controller to realize automatic unloading relief valve simulation, determine the relief valve pressure regulating range of 0∼0.38 MPa, For precision of constant pressure valve of oil spill, the simulation results show that the average 10 m3/h flow caused by pressure changes of about 0.06 MPa. Under the flow sudden change signal of about 40 m3/h, the maximum pressure change is less than 0.1 MPa. Through the simulation results, it is found that most of the lubrication parts in the original design have the phenomenon of flow redundancy, which causes unnecessary pump power loss. The system is optimized by PID technology. By comparing the simulation results before and after optimization, it is found that the speed of constant displacement pump could be changed in time by PID controller, and the flow redundancy could be improved significantly, so the lubricating oil system could be lower consumption and achieve the purpose of optimization.


Author(s):  
Alireza Riasi ◽  
Ahmad Nourbakhsh

Unsteady flow analysis in water power stations is one of the most important issues in order to predict undesirable pressure variations in waterways and also probable changes in rotor speed for the power plants safe operation. Installation of surge tank and relief valve is the two main methods for controlling of hydraulic transient. The relief valve is used in several medium and small hydropower stations instead of the surge tank and mounted on the penstock near the powerhouse. The recent generation of relief valves are reliable and beneficial and consist of fully control system that directly conducted by governor. This paper presents a numerical method for transient flow in hydropower stations using surge tank and relief valve. For this purpose the governing equations of transient flow in closed conduit are solved using the method of characteristics (MOC) using unsteady friction. Hydraulic turbine, surge tank and relief valve are considered as internal boundary conditions. The influence of surge tank and also relief valve on the maximum pressure in spiral case and turbine over speed has been studied for a real case. The results show that the transient condition is considerably improved by using a relief valve and this device can be mounted in lieu of an expensive surge tank.


Author(s):  
Vijay A. Neelakantan ◽  
Gregory N. Washington

The property of magnetorheological fluids to change their yield stress depending on applied magnetic fields can be employed to develop many controllable devices one of them being MR fluid based clutches. One major problem however with MR fluid based clutches is that at high rotational speeds, the iron/ferrous particles in the MR fluid centrifuge due to very high centrifugal forces. Thus the particles move outward as the speed increases thereby making the fluid non-homogeneous. Many times however the initial analysis assumes fluid homogeneity, which is really not the case. In this paper this problem is addressed by assuming various volume fraction profiles describing the fluid particle orientation. Two cases, one with a linear profile and the other with an exponential profile are discussed. Expressions for the torque transmitted are derived at for both disc shaped and cylindrical shaped clutches. In addition, the use of a MR sponge based clutch that may indeed reduce the effect of centrifugal forces significantly is described. The design methodology and configuration for the sponge clutch are also discussed. An experimental set up used to test the clutch is also described.


Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a Ring-like wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions — namely, one with and one without this Ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back-flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


1952 ◽  
Vol 17 (2) ◽  
pp. 105-116 ◽  
Author(s):  
Hao Wang

Certain axiomatic systems involve more than one category of fundamental objects; for example, points, lines, and planes in geometry; individuals, classes of individuals, etc. in the theory of types or in predicate calculi of orders higher than one. It is natural to use variables of different kinds with their ranges respectively restricted to different categories of objects, and to assume as substructure the usual quantification theory (the restricted predicate calculus) for each of the various kinds of variables together with the usual theory of truth functions for the formulas of the system. An axiomatic theory set up in this manner will be called many-sorted. We shall refer to the theory of truth functions and quantifiers in it as its (many-sorted) elementary logic, and call the primitive symbols and axioms (including axiom schemata) the proper primitive symbols and proper axioms of the system. Our purpose in this paper is to investigate the many-sorted systems and their elementary logics.Among the proper primitive symbols of a many-sorted system Tn (n = 2, …, ω) there may be included symbols of some or all of the following kinds: (1) predicates denoting the properties and relations treated in the system; (2) functors denoting the functions treated in the system; (3) constant names for certain objects of the system. We may either take as primitive or define a predicate denoting the identity relation in Tn.


Author(s):  
Tina Unglaube ◽  
Hsiao-Wei D. Chiang

In recent years closed loop supercritical carbon dioxide Brayton cycles have drawn the attention of many researchers as they are characterized by a higher theoretic efficiency and smaller turbomachinery size compared to the conventional steam Rankine cycle for power generation. Currently, first prototypes of this emerging technology are under development and thus small scale sCO2 turbomachinery needs to be developed. However, the design of sCO2 turbines faces several new challenges, such as the very high rotational speed and the high power density. Thus, the eligibility of well-established radial inflow gas turbine design principles has to be reviewed regarding their suitability for sCO2 turbines. Therefore, this work reviews different suggestion for optimum velocity ratios for gas turbines and aims to re-establish it for sCO2 turbines. A mean line design procedure is developed to obtain the geometric dimensions for small scale sCO2 radial inflow turbines. By varying the specific speed and the velocity ratio, different turbine configurations are set up. They are compared numerically by means of CFD analysis to conclude on optimum design parameters with regard to maximum total-to-static efficiency. Six sets of simulations with different specific speeds between 0.15 and 0.52 are set up. Higher specific speeds could not be analyzed, as they require very high rotational speeds (more than 140k RPM) for small scale sCO2 turbines (up to 150kWe). For each set of simulations, the velocity ratio that effectuates maximum efficiency is identified and compared to the optimum parameters recommended for radial inflow turbines using subcritical air as the working fluid. It is found that the values for optimum velocity ratios suggested by Rohlik (1968) are rather far away from the optimum values indicated by the conducted simulations. However, the optimum values suggested by Aungier (2005), although also established for subcritical gas turbines, show an approximate agreement with the simulation results for sCO2 turbines. Though, this agreement should be studied for a wider range of specific speeds and a finer resolution of velocity ratios. Furthermore, for high specific speeds in combination with high velocity ratios, the pressure drop of the designed turbines is too high, so that the outlet pressure is beyond the critical point. For low specific speeds in combination with low velocity ratios, the power output of the designed turbines becomes very small. Geometrically, turbines with low specific speeds and high velocity ratios are characterized by very small blade heights, turbines with high specific speeds and small velocity ratios by very small diameters.


2000 ◽  
Author(s):  
S.-H. Zhang ◽  
Y.-L. Shang

Abstract Punch force and maximum pressure for tube extrusion can be predicted with an upper bound theory-based program POLSK. Experiments of steel tube extrusion and wax physical modeling were performed. The punch force and the maximum pressure values were obtained. Comparisons were made among the experimental results, physical modeling results and upper bound predictions. It was found that a medium extrusion coefficient causes the lowest pressure on the tooling system, very low and very high extrusion coefficients can both cause very high pressure. It is proved that the upper bound predictions are in good agreement with the experimental results and the upper bound program is suitable for use of steel tube extrusion design.


2015 ◽  
Vol 766-767 ◽  
pp. 594-599 ◽  
Author(s):  
S. Girishankar ◽  
M. Omkumar

Hard Finish Turning has been Widely Acknowledged as an Excellent Alternative for the Traditional Grinding, Especially it Enables many Intricate Machining Profiles Possible, in a Single Machining Set-up. Cubic Boron Nitride (CBN) Inserts are Usually Used for Hard Turning of Superior Hardened Steel Parts to Very High Degree of Accuracy, Geometry and Surface Texture. the Performance of CBN is of Significant Importance for Hard Finish Turning, because of the High Single Cutting Edge Cost. an Array of Experiments are Conducted with Two Different Types of Low Content CBN Insert Grades, 1) Tin Coated Insert CB7015, 2) Non Coated Insert BN250 by Using a Tool Holder MTJNL2525M16 in a LT20 Classic ACE Turning Centre. the Surface Roughness is Inspected by SJ201P Surfinish Mitutoyo Profile Tester. the Parameters Determined during the Experiments are MRR, Ra, and Tool Life in Minutes, Number of Parts Machined. A Satisfactory Match has been Reached by Comparing Mathematical Model Tool Life Using Experimental Data from the General Taylor’s Tool Life Equation and Experimentally Measured Tool Life. the Cost Analysis is Carried out by Gilbert’s Approach Indicates that the Cost Incurred per Part Produced is Lesser in Tin Coated Insert. the Proposed Methodology can Help to Optimise the Hard Finish Turning Process for AISI M2 Die Steel, and Also in Evaluating the Performance of CBN Tin Coated Insert over Non-Coated Insert.


Sign in / Sign up

Export Citation Format

Share Document