Flow in Automotive Alternators

Author(s):  
T A Brungart ◽  
G A Meyer ◽  
G C Lauchle

A study of the flow field in and around an automotive alternator is described. The approach taken is to test the alternator in water at equivalent in-air Reynolds numbers in order to reduce the rotational velocity by a factor of approximately 15 and provide an environment ideal for flow visualization. The casing and stator were constructed from clear plastic in order to provide visual access inside the alternator. Dye injection flow visualization is used to assess qualitatively the global flow field. Laser Doppler velocimetry is used to perform a detailed, quantitative study of the alternator external flow field. Results from the flow field study are presented and modifications necessary for improved cooling and aerodynamic performance are identified and demonstrated.

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Abhijit Banerjee ◽  
Saurav K. Ghosh ◽  
Debopam Das

Flow field of a butterfly mimicking flapping model with plan form of various shapes and butterfly-shaped wings is studied. The nature of the unsteady flow and embedded vortical structures are obtained at chord cross-sectional plane of the scaled wings to understand the dynamics of insect flapping flight. Flow visualization and PIV experiments are carried out for the better understanding of the flow field. The model being studied has a single degree of freedom of flapping. The wing flexibility adds another degree to a certain extent introducing feathering effect in the kinematics. The mechanisms that produce high lift and considerable thrust during the flapping motion are identified. The effect of the Reynolds number on the flapping flight is studied by varying the wing size and the flapping frequency. Force measurements are carried out to study the variations of lift forces in the Reynolds number (Re) range of 3000 to 7000. Force experiments are conducted both at zero and finite forward velocity in a wind tunnel. Flow visualization as well as PIV measurement is conducted only at zero forward velocity in a stagnant water tank and in air, respectively. The aim here is to measure the aerodynamic lift force and visualize the flow field and notice the difference with different Reynolds number (Re), and flapping frequency (f), and advance ratios (J=U∞/2ϕfR).


Author(s):  
Marcel Gottschall ◽  
Konrad Vogeler ◽  
Ronald Mailach

The article describes numerical investigations on the influence of four different endwall clearance topologies for variable stator vanes to secondary flow field development and the performance of high pressure compressors. The aim of this work is to quantify the characteristics of different clearance configurations depending on the penny-axis position and the penny diameter for a typical operating range. All clearance configurations were implemented to a linear cascade of modern stator profiles. The analysis was introduced using a relative clearance size of 1.3% chord at three stagger angles and two characteristic Reynolds numbers to model the operating range on aircraft engines. 3D numerical calculations were carried out to gain information about the flow field inside the cascade. They were compared with measurements of a 5-hole-probe as well as pressure tappings on the airfoil and the endwall. The CFD shows the clearance characteristics in good agreement with the measurements for the lower and the nominal stagger angle. Small gaps in the rear part of the vane have a beneficial effect on the flow field. In contrast, a clearance in the higher loaded front part of the vane always resulted in increased losses. Otherwise, the significant enhanced performance of a rear part gap, which was measured at the higher stagger angle, was not reflected by the CFD. The reduced mixing losses and the higher averaged flow turning even compared to a configuration without a clearance are not verified with the calculations. Large flow separations at the high stagger angle result in a two to four times higher underturning of the CFD in comparison to the experiments. The clearance effects to the characteristic radial loss distribution up to 40 % bladeheight also deviate from the measurements due to heavy mixing of clearance and reversed separated flow.


2021 ◽  
Vol 33 (9) ◽  
pp. 095105
Author(s):  
Longyan Wang ◽  
Zhaohui Luo ◽  
Jian Xu ◽  
Wei Luo ◽  
Jianping Yuan

2013 ◽  
Vol 730 ◽  
pp. 145-161 ◽  
Author(s):  
Qiqi Wang ◽  
Jun-Hui Gao

AbstractThis paper analyses the adjoint solution of the Navier–Stokes equation. We focus on flow across a circular cylinder at three Reynolds numbers, ${\mathit{Re}}_{D} = 20, 100$ and $500$. The quantity of interest in the adjoint formulation is the drag on the cylinder. We use classical fluid mechanics approaches to analyse the adjoint solution, which is a vector field similar to a flow field. Production and dissipation of kinetic energy of the adjoint field is discussed. We also derive the evolution of circulation of the adjoint field along a closed material contour. These analytical results are used to explain three numerical solutions of the adjoint equations presented in this paper. The adjoint solution at ${\mathit{Re}}_{D} = 20$, a viscous steady state flow, exhibits a downstream suction and an upstream jet, the opposite of the expected behaviour of a flow field. The adjoint solution at ${\mathit{Re}}_{D} = 100$, a periodic two-dimensional unsteady flow, exhibits periodic, bean-shaped circulation in the near-wake region. The adjoint solution at ${\mathit{Re}}_{D} = 500$, a turbulent three-dimensional unsteady flow, has complex dynamics created by the shear layer in the near wake. The magnitude of the adjoint solution increases exponentially at the rate of the first Lyapunov exponent. These numerical results correlate well with the theoretical analysis presented in this paper.


Author(s):  
Sina Pooladsanj ◽  
Mehran Tadjfar

A numerical study has been performed to evaluate the aerodynamics coefficients of a winglet in the range of Reynolds numbers below 30,000. In this study some parameters on winglet design have been considered. The effect of winglet-tip airfoil thickness has been investigated on aerodynamics coefficients. In order to explore this effect, two different airfoils (NACA0002 and NACA0012) were employed at the winglet-tip. The influence of varying the winglet connection angle to the wing on aerodynamics coefficients and flow field characteristics in the vortex flow zone such as; circulation magnitude and vorticity magnitude in the vortex core have been studied. Six connection angles including 20°, 30°, 40°, 50°, 60° and 70° have been studied. Negative values of these angles have also been considered. In addition, the effect of changing wing aspect ratio on aerodynamics coefficients has been investigated. To solve the flow field around the studied geometry a fully structured grid was used which consists of 84 blocks.


Author(s):  
A T Sayers

The phenomenon of reverse swing of the ball in a game of cricket is achieved by very few bowlers, and then only by those who seem able to bowl at speeds in excess of 85 mile/h. It also seems that reverse swing cannot be achieved at will. Rather, it is obtained perhaps by accident as much as by design, its inception being as much of a surprise to the bowler as to the batsman. This would suggest that the flow conditions pertaining to reverse swing are extremely marginal at best. This paper investigates the flow conditions required for reverse swing to occur and presents data describing the lift and drag on the ball. While some direct measurements are made on a cricket ball for comparison purposes, the flow over the ball is modelled through a 2.7:1 scale ratio sphere. This permitted relatively large lift and drag forces to be measured. The results define the range of Reynolds numbers and seam angles over which reverse swing will occur, as well as the corresponding forces on the cricket ball. Flow visualization is used to indicate the state of the boundary layer.


Sign in / Sign up

Export Citation Format

Share Document