scholarly journals Tissue Distribution of mRNA Expression of Human Cytochrome P450 Isoforms Assessedby High-Sensitivity Real-Time Reverse Transcription PCR

2003 ◽  
Vol 123 (5) ◽  
pp. 369-375 ◽  
Author(s):  
Masuhiro NISHIMURA ◽  
Hiroshi YAGUTI ◽  
Hiroki YOSHITSUGU ◽  
Shinsaku NAITO ◽  
Tetsuo SATOH
2007 ◽  
Vol 14 (12) ◽  
pp. 1563-1571 ◽  
Author(s):  
Noel P. Harrington ◽  
Om P. Surujballi ◽  
W. Ray Waters ◽  
John F. Prescott

ABSTRACT Tuberculosis of free-ranging and captive wildlife, including species implicated in the maintenance and transmission of Mycobacterium bovis, is a difficult disease to diagnose and control. Historically, diagnosis of tuberculosis has relied largely upon assays of cell-mediated immunity (CMI), such as tuberculin skin testing. This approach, however, is problematic or impractical for use with many wildlife species. Increasingly, in vitro diagnostic tests, including gamma interferon (IFN-γ)-based assays, are replacing or complementing skin testing of cattle and humans. Analogous assays are unavailable for most wildlife because of a lack of species-specific immunological reagents. This report describes the development and validation of a whole-blood assay to quantify antigen-specific IFN-γ mRNA expression by quantitative real-time reverse transcription-PCR. Oligonucleotide primers and probes were designed and tested for reactivity towards several susceptible species of interest with respect to tuberculosis infection. The assay was subsequently optimized to quantify the IFN-γ mRNA expression in elk and red deer (Cervus elaphus) and was evaluated for its ability to detect mycobacterial antigen-specific responses of experimentally tuberculosis-infected animals. The assay was a simple, rapid, and sensitive measure of antigen-specific CMI. The IFN-γ mRNA responses correlated well with IFN-γ protein production and showed performance in determining an animal's infection status superior to that of either lymphocyte proliferation or IFN-γ protein enzyme-linked immunosorbent assay methods. An additional advantage is the ease with which the assay can be modified to reliably quantify IFN-γ expression by using consensus sequences of closely related species or of other species for which IFN-γ sequence information is available.


2002 ◽  
Vol 29 (1) ◽  
pp. 23-39 ◽  
Author(s):  
SA Bustin

The fluorescence-based real-time reverse transcription PCR (RT-PCR) is widely used for the quantification of steady-state mRNA levels and is a critical tool for basic research, molecular medicine and biotechnology. Assays are easy to perform, capable of high throughput, and can combine high sensitivity with reliable specificity. The technology is evolving rapidly with the introduction of new enzymes, chemistries and instrumentation. However, while real-time RT-PCR addresses many of the difficulties inherent in conventional RT-PCR, it has become increasingly clear that it engenders new problems that require urgent attention. Therefore, in addition to providing a snapshot of the state-of-the-art in real-time RT-PCR, this review has an additional aim: it will describe and discuss critically some of the problems associated with interpreting results that are numerical and lend themselves to statistical analysis, yet whose accuracy is significantly affected by reagent and operator variability.


2013 ◽  
Vol 62 (7) ◽  
pp. 1060-1064 ◽  
Author(s):  
Xueyong Huang ◽  
Licheng Liu ◽  
Yanhua Du ◽  
Hongxia Ma ◽  
Yujiao Mu ◽  
...  

A novel bunyavirus associated with fever, thrombocytopenia and leukopenia syndrome (FTLS) was discovered in Henan Province, China. Here, we report the development of an assay for this novel bunyavirus based on real-time reverse transcription PCR (RT-PCR). The assay exhibited high sensitivity and specificity without cross-reactivity towards 13 other viruses that cause similar symptoms. To evaluate the performance of this assay in detecting clinical samples, we analysed 261 serum samples from patients in Henan Province between 2007 and 2010. Of these samples, 91.95 % were bunyavirus positive. Compared with serological assays, the real-time PCR assay was much more sensitive in identifying infected patients 1 to 7 days after the onset of symptoms.


Pathology ◽  
2003 ◽  
Vol 35 (6) ◽  
pp. 513-517 ◽  
Author(s):  
Tarek A. Bismar ◽  
Fernando J. Bianco ◽  
Hongquan Zhang ◽  
Xingli Li ◽  
Fazlul H. Sarkar ◽  
...  

2021 ◽  
pp. 104868
Author(s):  
Marielle BEDOTTO ◽  
Pierre-Edouard FOURNIER ◽  
Linda HOUHAMDI ◽  
Philippe COLSON ◽  
Didier RAOULT

Sign in / Sign up

Export Citation Format

Share Document