COMPARISONS BETWEEN TOTAL BODY WATER AND HYDROSTATIC WEIGHING METHODS FOR THE DETERMINATION OF BODY FAT CONTENT IN MALES VERSUS FEMALES

1984 ◽  
Vol 16 (2) ◽  
pp. 134
Author(s):  
J. C. Bunt ◽  
R. A. Boileau ◽  
T. G. Lohman
1986 ◽  
Vol 60 (3) ◽  
pp. 836-840 ◽  
Author(s):  
D. S. Lewis ◽  
W. L. Rollwitz ◽  
H. A. Bertrand ◽  
E. J. Masoro

A nuclear magnetic resonance (NMR) method is described for quantitatively measuring total body water (TBW) and for estimating the fat content of baboons. The hydrogen associated with water was measured as the amplitude of the free-induction decay voltage following a series of 90 degree radio frequency pulses at the Lamour frequency for hydrogen with a pulse length of 14 microseconds and a peak measuring time of 50 microseconds. TBW was calculated by multiplying the peak amplitude (volts) by the experimentally determined constant for a water standard (g water/V). This NMR method yielded TBW contents similar to those obtained in the same baboons by direct gravimetric procedures. In contrast, the widely used 3H2O-dilution method usually and variably overestimated body water. By providing an accurate measure of body water, this NMR procedure provides a rapid, noninvasive, reasonably accurate way of estimating body fat content.


1979 ◽  
Vol 42 (2) ◽  
pp. 173-183 ◽  
Author(s):  
J. S. Garrow ◽  
Susan Stalley ◽  
R. Diethelm ◽  
Ph. Pittet ◽  
R. Hesp ◽  
...  

1. A new apparatus is described with which it is possible to measure the volume (and hence density) of obese patients without requiring them to immerse totally in water. Replicate measurements of subjects with 6, 23 and 38 kg body fat had a standard deviation not greater than 0.3 kg fat.2. In nineteen obese women body fat was measured by density, total body water, and total body potassium at the beginning, and again at the end, of a period of 3–4 weeks on a reducing diet, during which they lost 5.43 (SD 1.83) kg in weight. The composition of weight loss was also estimated both by energy balance and nitrogen balance during the interval between the two measurements of body composition.3. The estimates of fat content of the nineteen women at the start of the balance period were 45.63 (SD 14.50)kg by density, 48.07 (SD 13.88) kg by K and 47.09 (SD 13.85) kg by water. The correlation coefficient between the density and K estimate was 0–949, and for the density and water estimate it was 0.971.4. It is concluded that measurement of density by the new method provides a convenient method for estimating body fatness, and change in fat content, which compares favourably with estimates based on total body water or total body K. However, these methods cannot be used to provide an accurate estimate of the composition of a small weight loss in an individual since deviations up to 4 kg fat occur between fat loss based on change in density and those based on the more reliable (but more tedious) energy balance method.


1974 ◽  
Vol 82 (1) ◽  
pp. 105-112 ◽  
Author(s):  
B. S. W. Smith ◽  
A. R. Sykes

SUMMARYEight mature female sheep were offered a ration which maintained body weight constant during a 20-week period. During the final 10 weeks a comparison was made in each animal of the pattern of equilibration and urinary losses of tritiated water during 8 h after dosing by four different routes. These were intravenous, intraperitoneal, intraruminal and a combination of the intraperitoneal and intraruminal routes. Tritiated water spaces were calculated from (a) the 8-h plasma specific activity and (b) by extrapolation to zero time of the plasma specific activities during the 7 days after injection. At the end of the experiment the fat and water contents of the bodies of the sheep were determined directly.Complete equilibration of tritiated water between plasma and rumen water was not achieved in all animals 8 h after intravenous or intraperitoneal injection but was when the rumen was primed by the combination of intraperitoneal and intraruminal dosing. After intraruminal dosing equilibration was not achieved in any animal within 8 h of dosing.Urinary losses of marker were lower after intraruminal dosing but otherwise averaged 4–5 % of the dose/1 urine. This was equivalent to 0·3–6·7% of the dose for individual sheep.Errors resulting from incomplete equilibration and urinary loss of marker did not influence the efficiency of prediction of total body water from tritiated water space. The multiple correlation coefficient relating body fat with empty body weight and its water content was very high (r = 0·99). Errors introduced into this relationship by the inclusion of gut water in the prediction equations were apparently of a similar magnitude to those resulting from the errors in the estimation of tritiated water space.The extrapolation method for the determination of tritiated water space was shown to have the same accuracy as equilibration techniques under these controlled dietary conditions.


1961 ◽  
Vol 12 (4) ◽  
pp. 681 ◽  
Author(s):  
OE Budtz-Olsen ◽  
JD Cleeve ◽  
BA Oelrichs

A simple method for the estimation of total body water in sheep by alcohol dilution is described. It was found that Romney Marsh ewes have a significantly higher water content than Merinos. Increased total body water is therefore not the factor which allows the Merino to survive in a hot dry environment in which the Romney Marsh does not thrive. It is pointed out that total body water cannot be used in the usual way for the determination of the fat content in live sheep.


1981 ◽  
Vol 96 (1) ◽  
pp. 213-220 ◽  
Author(s):  
D. A. Little ◽  
R. W. McLean

SUMMARYFollowing the measurement of tritiated water (TOH) spaces, 31 cattle were slaughtered and chemically analysed in this study. They included several breeds, both females and castrate males, and were of varied nutritional history. Their body-fat content ranged from 4 to 21% of fasted live weight.Total body water (including the water in the gut contents) was reliably estimated from TOH space, measured after allowing an overnight 16 h waterless fast for TOH equilibration. Following this regime, residual D.M. in the gut contents amounted to 1·75% of fasted live weight. The relationships of body fat to body weight, and body fat to body water when both were expressed as percentages of body weight, were too variable to be used in any predictive fashion. Equations were derived, using fasted live weight, allowing the accurate estimation in vivo of the quantities of the chemical components in the whole body (i.e. total body minus D.M. in gut contents).It was demonstrated that the sum of total body water and total body fat constituted virtually 80% of total body tissues, and that total body protein closely approximated 80% of the fat-free dry matter, in cattle varying widely in body condition. These relationships constitute the physiological basis of the equations presented.Comparable principles appear to apply to sheep, and a range of other mammalian species.


2002 ◽  
Vol 88 (3) ◽  
pp. 325-329 ◽  
Author(s):  
J. LaForgia ◽  
R. T. Withers

This study estimated total body water (TBW) in four groups (twelve per group; sedentary and highly trained men and women) at the time of 2H dosing (T0) and after a 3·5 h equilibration period (Teq). Standard TBW calculations were employed at T0 (no correction for disproportionate urinary tracer loss) and Teq (correction for urinary tracer loss only), plus those calculations that corrected for a disproportionate urinary tracer loss and insensible tracer loss respectively. The measurement of body density enabled the four TBW estimates to be compared for the determination of three-compartment % body fat (BF). The very small difference between the standard and corrected T0 TBW data was not significant (P=0·914) and no Group×TBW interaction was identified (P=0·125). These results reflect the closeness of the 2H concentration in the urine produced during the equilibration period and the Teq saliva samples. The associated mean % BF values were essentially identical. Although correcting for insensible 2H losses in addition to urinary losses at Teq produced a statistically significant (P<0·001) lower mean TBW (about 200 g) than the standard calculation, this translated to a small difference in % BF (0·3). The larger difference (about 500 g, P<0·001) between the two (T0, Teq) corrected TBW calculations was also associated with a small body composition difference (0·1 % BF), which was less than the propagated error (0·3 % BF) for the three-compartment body composition model. Corrections to the standard calculations of TBW at T0 and Teq for a protocol employing a brief equilibration period (3·5 h) were therefore of marginal use for improving the accuracy of % BF estimates. The TBW difference over time (T0v. Teq) also had little impact on % BF values.


Diabetes ◽  
1992 ◽  
Vol 41 (9) ◽  
pp. 1151-1159 ◽  
Author(s):  
E. Bonora ◽  
S. Del Prato ◽  
R. C. Bonadonna ◽  
G. Gulli ◽  
A. Solini ◽  
...  

Author(s):  
Brett S. Nickerson ◽  
Samantha V. Narvaez ◽  
Mitzy I. Juarez ◽  
Stefan A. Czerwinski

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Elisabet Forsum ◽  
Eva Flinke Carlsson ◽  
Hanna Henriksson ◽  
Pontus Henriksson ◽  
Marie Löf

Childhood overweight and obesity, a worldwide problem, is generally identified using BMI (body mass index). However, this application of BMI has been little investigated in children below 5 years of age due to a lack of appropriate methods to assess body composition. Therefore, we used air displacement plethysmography (ADP) to study 4.4-year old boys and girls since this method is accurate in young children if they accept the requirements of the measurement. The purpose was to analyze the relationship between BMI and body fat in these children. Body composition was assessed in 76 (43 boys, 33 girls) of the 84 children brought to the measurement session. Boys and girls contained25.2±4.7and26.8±4.0% body fat, respectively. BMI-based cut-offs for overweight could not effectively identify children with a high body fat content. There was a significant (P<0.001) but weak (r=0.39) correlation between BMI and body fat (%). In conclusion, requirements associated with a successful assessment of body composition by means of ADP were accepted by most 4-year-olds. Furthermore, BMI-based cut-offs for overweight did not effectively identify children with a high body fatness and BMI explained only a small proportion of the variation in body fat (%) in this age group.


Sign in / Sign up

Export Citation Format

Share Document