Estimation of the body chemical composition of live cattle varying widely in fat content

1981 ◽  
Vol 96 (1) ◽  
pp. 213-220 ◽  
Author(s):  
D. A. Little ◽  
R. W. McLean

SUMMARYFollowing the measurement of tritiated water (TOH) spaces, 31 cattle were slaughtered and chemically analysed in this study. They included several breeds, both females and castrate males, and were of varied nutritional history. Their body-fat content ranged from 4 to 21% of fasted live weight.Total body water (including the water in the gut contents) was reliably estimated from TOH space, measured after allowing an overnight 16 h waterless fast for TOH equilibration. Following this regime, residual D.M. in the gut contents amounted to 1·75% of fasted live weight. The relationships of body fat to body weight, and body fat to body water when both were expressed as percentages of body weight, were too variable to be used in any predictive fashion. Equations were derived, using fasted live weight, allowing the accurate estimation in vivo of the quantities of the chemical components in the whole body (i.e. total body minus D.M. in gut contents).It was demonstrated that the sum of total body water and total body fat constituted virtually 80% of total body tissues, and that total body protein closely approximated 80% of the fat-free dry matter, in cattle varying widely in body condition. These relationships constitute the physiological basis of the equations presented.Comparable principles appear to apply to sheep, and a range of other mammalian species.

1988 ◽  
Vol 47 (3) ◽  
pp. 435-445 ◽  
Author(s):  
F. R. Dunshea ◽  
A. W. Bell ◽  
K. D. Chandler ◽  
T. E. Trigg

ABSTRACTA two-pool model of tritiated water kinetics was investigated as a means of partitioning total body water into empty body water and gut water in 17 lactating goats. Empty body water, gut water and total body water were of a similar magnitude to, and highly correlated with, a rapidly equilibrating tritiated water pool, a more slowly equilibrating pool and the sum of these two pools, respectively.Empty body fat was poorly correlated with both live weight and empty body weight (R2 = 0·42 and 0·51, respectively). However, there was a strong inverse relationship between the water and fat contents of the empty body. Consequently, empty body fat was accurately predicted by a multiple regression equation which included both empty body weight and empty body water as independent variables (R2 = 0·97). Substitution of these variables with estimates derived from tritiated water kinetics still resulted in a high correlation (R2 = 0·88). Tritiated water kinetics offered little improvement over live weight alone in the prediction of empty body protein, empty body ash or fat-free empty body.


1980 ◽  
Vol 95 (3) ◽  
pp. 515-522 ◽  
Author(s):  
R. T. Cowan ◽  
J. J. Robinson ◽  
I. McHattie ◽  
C. Fraser

SUMMARYThe efficacy of estimates of gut contents and total body water in increasing the precision with which the chemical composition of the body could be estimated in early lactation was evaluated in 36 Finnish Landrace × Dorset Horn ewes. The ewes were fed at two levels in pregnancy, and, in lactation, given diets of two metabolizable energy concentrations.The allometric relationships relating weight of chemical fat and protein to emptybody weight were not affected by treatment or stage of lactation. Inclusion of an index of gut contents, based on dry-matter intake, indigestibility and retention time of food residues, together with live weight in a regression equation predicting weight of body fat, only slightly increased the precision of estimate compared with equations using live weight alone.There was a close negative relationship between the proportions of water and fat in live weight. Inclusion of weight of body water with live weight in a regression equation predicting weight of body fat markedly increased the precision of estimate and the residual error (0·81 kg) was similar at different stages of lactation. However, when deuterium oxide space was used instead of body water there was only a small increase in precision of estimate and the residual error varied from 5·3 kg in early lactation to 2·1 kg in mid-lactation. The relationship between deuterium oxide space and body water was shown to be variable and altered by stage of lactation, and these differences were associated with differences in rate of water turnover in the animal's body.It is concluded that estimates of body water are unsuitable for estimating weight of body fat in early lactation.


1983 ◽  
Vol 101 (2) ◽  
pp. 257-264 ◽  
Author(s):  
P. R. N. Chigaru ◽  
D. H. Holness

SUMMARYThe body composition of 18 each of Mashona, Afrikaner and Hereford heifers was measured at the beginning and after 16 and 32 weeks of the experiment. The heifers not slaughtered at the beginning of the experiment were fed a complete diet containing 132 g crude protein and 12·0 MJ metabolizable energy/kg dry matter. Before slaughter, the animals were deprived of food and water for 24 h. Each animal was infused with 1 mCi of tritiated water (TOH) in order to measure total body water (TBW) and to estimate body fat.The growth rate of the three breeds of heifers was similar despite differences in age and initial live weight. Both TBW and fat proportions, however, differed significantly (P < 0·01) between slaughter stages for each breed and between breeds at each slaughter stage. At the first, second and final slaughter stages the proportions of TBW were: 68·0, 59·4 and 54·5% for Mashona; 70·;5, 64·3 and 58·3% for Afrikaner and 65·3, 57·6 and 46·2% for Hereford heifers respectively. The corresponding proportions of body fat were: 10·2, 18·4 and 24·2% for Mashona; 6·6, 12·0 and 20·0% for Afrikaner and 13·7, 20·8 and 25·8% for Hereford heifers respectively.There was a close relation between empty body weight and live weight at slaughter which was not influenced by breed. Both TBW and fat were estimated more accurately when TOH space and live weight were used jointly. However, the slopes of the prediction equations for each breed were significantly different (P < 0·05) in the case of both total body water and fat. It was necessary to use separate equations for each breed in order to predict either body water or fat. The significance of these findings for the estimation of body fat in live cattle is discussed.


1979 ◽  
Vol 42 (2) ◽  
pp. 173-183 ◽  
Author(s):  
J. S. Garrow ◽  
Susan Stalley ◽  
R. Diethelm ◽  
Ph. Pittet ◽  
R. Hesp ◽  
...  

1. A new apparatus is described with which it is possible to measure the volume (and hence density) of obese patients without requiring them to immerse totally in water. Replicate measurements of subjects with 6, 23 and 38 kg body fat had a standard deviation not greater than 0.3 kg fat.2. In nineteen obese women body fat was measured by density, total body water, and total body potassium at the beginning, and again at the end, of a period of 3–4 weeks on a reducing diet, during which they lost 5.43 (SD 1.83) kg in weight. The composition of weight loss was also estimated both by energy balance and nitrogen balance during the interval between the two measurements of body composition.3. The estimates of fat content of the nineteen women at the start of the balance period were 45.63 (SD 14.50)kg by density, 48.07 (SD 13.88) kg by K and 47.09 (SD 13.85) kg by water. The correlation coefficient between the density and K estimate was 0–949, and for the density and water estimate it was 0.971.4. It is concluded that measurement of density by the new method provides a convenient method for estimating body fatness, and change in fat content, which compares favourably with estimates based on total body water or total body K. However, these methods cannot be used to provide an accurate estimate of the composition of a small weight loss in an individual since deviations up to 4 kg fat occur between fat loss based on change in density and those based on the more reliable (but more tedious) energy balance method.


1986 ◽  
Vol 60 (3) ◽  
pp. 836-840 ◽  
Author(s):  
D. S. Lewis ◽  
W. L. Rollwitz ◽  
H. A. Bertrand ◽  
E. J. Masoro

A nuclear magnetic resonance (NMR) method is described for quantitatively measuring total body water (TBW) and for estimating the fat content of baboons. The hydrogen associated with water was measured as the amplitude of the free-induction decay voltage following a series of 90 degree radio frequency pulses at the Lamour frequency for hydrogen with a pulse length of 14 microseconds and a peak measuring time of 50 microseconds. TBW was calculated by multiplying the peak amplitude (volts) by the experimentally determined constant for a water standard (g water/V). This NMR method yielded TBW contents similar to those obtained in the same baboons by direct gravimetric procedures. In contrast, the widely used 3H2O-dilution method usually and variably overestimated body water. By providing an accurate measure of body water, this NMR procedure provides a rapid, noninvasive, reasonably accurate way of estimating body fat content.


1974 ◽  
Vol 82 (1) ◽  
pp. 105-112 ◽  
Author(s):  
B. S. W. Smith ◽  
A. R. Sykes

SUMMARYEight mature female sheep were offered a ration which maintained body weight constant during a 20-week period. During the final 10 weeks a comparison was made in each animal of the pattern of equilibration and urinary losses of tritiated water during 8 h after dosing by four different routes. These were intravenous, intraperitoneal, intraruminal and a combination of the intraperitoneal and intraruminal routes. Tritiated water spaces were calculated from (a) the 8-h plasma specific activity and (b) by extrapolation to zero time of the plasma specific activities during the 7 days after injection. At the end of the experiment the fat and water contents of the bodies of the sheep were determined directly.Complete equilibration of tritiated water between plasma and rumen water was not achieved in all animals 8 h after intravenous or intraperitoneal injection but was when the rumen was primed by the combination of intraperitoneal and intraruminal dosing. After intraruminal dosing equilibration was not achieved in any animal within 8 h of dosing.Urinary losses of marker were lower after intraruminal dosing but otherwise averaged 4–5 % of the dose/1 urine. This was equivalent to 0·3–6·7% of the dose for individual sheep.Errors resulting from incomplete equilibration and urinary loss of marker did not influence the efficiency of prediction of total body water from tritiated water space. The multiple correlation coefficient relating body fat with empty body weight and its water content was very high (r = 0·99). Errors introduced into this relationship by the inclusion of gut water in the prediction equations were apparently of a similar magnitude to those resulting from the errors in the estimation of tritiated water space.The extrapolation method for the determination of tritiated water space was shown to have the same accuracy as equilibration techniques under these controlled dietary conditions.


2007 ◽  
Vol 47 (4) ◽  
pp. 565-570 ◽  
Author(s):  
Bogdan Balas ◽  
Renata Belfort ◽  
Stephen A. Harrison ◽  
Celia Darland ◽  
Joan Finch ◽  
...  

1994 ◽  
Vol 72 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Rosemary Gales ◽  
Deane Renouf ◽  
Elizabeth Noseworthy

Using chemical analysis we measured the composition of 26 harp seals (Phoca groenlandica) representing both sexes, aged between 3 months and 30 years, and encompassing a wide range of body conditions. Predictive relationships between total body water and total body fat contents, total body protein content, and gross energy were calculated. These equations allow accurate estimation of harp seal body composition provided total body water content and body mass are known. Using these data we compared the accuracy of three existing equations that have been used to predict body fat content of other species. We found that in adult harp seals, lean body mass has a relatively stable hydration of 70% but the hydration of blubber varied with body condition. Lipid content, and thus energy density of blubber, increased with increasing body condition.


1979 ◽  
Vol 29 (1) ◽  
pp. 81-90 ◽  
Author(s):  
R. T. Cowan ◽  
J. J. Robinson ◽  
J. F. D. Greenhalgh ◽  
I. McHattie

ABSTRACTChanges in body composition during lactation were measured in 12 Border Leicester × Scottish Blackface ewes by serial slaughter at 12, 41 and 111 days of lactation. Ewes suckled twin lambs and were given daily 1·6 kg dry matter of a complete diet containing 151 g crude protein and 10·2 MJ metabolizable energy/kg dry matter.Live weights of ewes averaged 60·2, 58·9 and 55·8 kg at 12, 41 and 111 days of lactation respectively. There were no significant changes in weights of stomach, small and large intestine and liver.The weight of body fat averaged 9·19, 2·28 and 1·19 kg at 12, 41 and 111 days respectively (P < 0·001) and weight of ash increased from 1·72 kg at 12 days to 2·30 kg at 111 days (P < 0·001). Water to protein ratios at the three stages of lactation were 2·94, 3·36 and 3·18 (P < 0·10). The energy value of weight loss varied from 68 to 17 MJ/kg, depending on the relative changes in total body water and fat. Live-weight change was therefore a poor indicator of change in body energy during early lactation.Body fat could be predicted from its combined relationships with live weight and total body water (residual s.d. ±0·70 kg), but when deuterium oxide space was used to estimate body water separate equations were necessary for early and later stages of lactation. This was apparently due to differences between stages of lactation in the time required for deuterium oxide to equilibrate with water in the reticulo-rumen.


Sign in / Sign up

Export Citation Format

Share Document