scholarly journals RELATIONSHIP BETWEEN OXYGEN UPTAKE, STROKE RATE AND SWIMMING VELOCITY IN COMPETITIVE SWIMMING

1995 ◽  
Vol 27 (Supplement) ◽  
pp. S26
Author(s):  
K. Wakayoshi ◽  
A. Nakatani ◽  
L. J. DʼAcquisto ◽  
J. M. Cappaert ◽  
J. P. Troup
1995 ◽  
Vol 16 (01) ◽  
pp. 19-23 ◽  
Author(s):  
K. Wakayoshi ◽  
L. D'Acquisto ◽  
J. Cappaert ◽  
J. Troup

2010 ◽  
Vol 42 (10) ◽  
pp. 1909-1913 ◽  
Author(s):  
SCOTT P. McLEAN ◽  
DEAN PALMER ◽  
GRAHAM ICE ◽  
MARTIN TRUIJENS ◽  
JIMMY C. SMITH

2020 ◽  
Vol 15 (1) ◽  
pp. 105-112
Author(s):  
Gavriil G. Arsoniadis ◽  
Gregory C. Bogdanis ◽  
Gerasimos Terzis ◽  
Argyris G. Toubekis

Purpose: To examine the acute effect of dry-land strength training on physiological and biomechanical parameters in a subsequent swim training session. Methods: Twelve male swimmers (age: 19.0 [2.2] y, peak oxygen uptake: 65.5 [11.4] mL·kg−1·min−1) performed a 5 × 200-m test with progressively increasing intensity. Blood lactate (BL) concentration was measured after each 200-m bout, and the speed corresponding to 4 mmol·L−1 (V4) was calculated. In the experimental (EXP) and control (CON) conditions, swimmers participated in a swim training session consisting of 1000-m warm-up, a bout of 10-second tethered swimming sprint, and 5 × 400 m at V4. In EXP condition, swimmers completed a dry-land strength training session (load: 85% of 1-repetition maximum) 15 minutes before the swimming session. In CON condition, swimmers performed the swimming session only. Oxygen uptake, BL concentration, arm-stroke rate, arm-stroke length, and arm-stroke efficiency were measured during the 5 × 400 m. Results: Force in the 10-second sprint was not different between conditions (P = .61), but fatigue index was higher in the EXP condition (P = .03). BL concentration was higher in EXP condition and showed large effect size at the fifth 400-m repetition compared with CON condition (6.4 [2.7] vs 4.6 [2.8] mmol·L−1, d = 0.63). During the 5 × 400 m, arm-stroke efficiency remained unchanged, arm-stroke length was decreased from the third repetition onward (P = .01), and arm-stroke rate showed a medium increment in EXP condition (d = 0.23). Conclusions: Strength training completed 15 minutes before a swim training session caused moderate changes in biomechanical parameters and increased BL concentration during swimming. Despite these changes, swimmers were able to maintain force and submaximal speed during the endurance training session.


2018 ◽  
Vol 13 (7) ◽  
pp. 897-902 ◽  
Author(s):  
Pedro G. Morouço ◽  
Tiago M. Barbosa ◽  
Raul Arellano ◽  
João P. Vilas-Boas

Context: In front-crawl swimming, the upper limbs perform alternating movements with the aim of achieving a continuous application of force in the water, leading to lower intracyclic velocity variation (dv). This parameter has been identified as a crucial criterion for swimmers’ evaluation. Purpose: To examine the assessment of intracyclic force variation (dF) and to analyze its relationship with dv and swimming performance. Methods: A total of 22 high-level male swimmers performed a maximal-effort 50-m front-crawl time trial and a 30-s maximal-effort fully tethered swimming test, which were randomly assigned. Instantaneous velocity was obtained by a speedometer and force by a strain-gauge system. Results: Similarity was observed between the tests, with dF attaining much higher magnitudes than dv (P < .001; d = 8.89). There were no differences in stroke rate or in physiological responses between tethered and free swimming, with a high level of agreement for the stroke rate and blood lactate increase. Swimming velocity presented a strong negative linear relationship with dF (r = −.826, P < .001) and a moderate negative nonlinear relationship with dv (r = .734, P < .01). With the addition of the maximum impulse to dF, multiple-regression analysis explained 83% of the free-swimming performance. Conclusions: Assessing dF is a promising approach for evaluating a swimmer’s performance. From the experiments, this new parameter showed that swimmers with higher dF also present higher dv, leading to a decrease in performance.


2018 ◽  
Vol 34 (1) ◽  
pp. 53-64 ◽  
Author(s):  
David Simbaña Escobar ◽  
Philippe Hellard ◽  
David B. Pyne ◽  
Ludovic Seifert

To study the variability in stroking parameters between and within laps and individuals during competitions, we compared and modeled the changes of speed, stroke rate, and stroke length in 32 top-level male and female swimmers over 4 laps (L1–L4) in 200-m freestyle events using video-derived 2-dimensional direct linear transformation. For the whole group, speed was greater in L1, with significant decreases across L2, L3, and L4 (1.80 ± 0.10 vs 1.73 ± 0.08; 1.69 ± 0.09; 1.66 ± 0.09  · s−1,P < .05). This variability was attributed to a decrease in stroke length (L2: 2.43 ± 0.19 vs L4: 2.20 ± 0.13 m,P < .05) and an increase in stroke rate (L2: 42.8 ± 2.6 vs L4: 45.4 ± 2.3 stroke · min−1,P < .05). The coefficient of variation and the biological coefficient of variation in speed were greater for male versus female (3.9 ± 0.7 vs 3.1 ± 0.7; 2.9 ± 1.0 vs 2.6 ± 0.7,P < .05) and higher in L1 versus L2 (3.9 ± 1.3 vs 3.1 ± 0.1; 2.9 ± 0.9 vs 2.3 ± 0.7,P < .05). Intra-lap speed values were best represented by a cubic (n = 38), then linear (n = 37) and quadratic model (n = 8). The cubic fit was more frequent for males (43.8%) than females (15.6%), suggesting greater capacity to generate higher acceleration after the turn. The various stroking parameters managements within lap suggest that each swimmer adapts his/her behavior to the race constraints.


2012 ◽  
Vol 34 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Daniel López-Plaza ◽  
Fernando Alacid ◽  
Pedro A. López-Miñarro ◽  
José M. Muyor

AbstractThe purpose of this study was to determine the influence of different sizes of hand paddles on kinematicparameters during a 100 m freestyle swimming performance in elite swimmers. Nine elite swimmers (19.1 ± 1.9 years)completed three tests of 100 m without paddles, with small paddles (271.27 cm2) and with large paddles (332.67 cm2),respectively. One video camera was used to record the performance during the three trials. The mean swimmingvelocity, stroke rate and stroke length were measured in the central 10 meters of each 50 m length. The results showedthat stroke length tended to increase significantly when wearing hand paddles (p < 0.05) during both the first andsecond 50 m sections whereas the increase in swimming velocity occurred only in the second 50 m (p < 0.05).Conversely, the stroke rate showed a slight decreasing trend with increasing paddle size. During the 100 m freestyletrial the stroke kinematics were changed significantly as a result of the increase in propelling surface size when handpaddles were worn.


1997 ◽  
Vol 85 (1) ◽  
pp. 167-177 ◽  
Author(s):  
Didier Chollet ◽  
Chantal Delaplace ◽  
Patrick Pelayo ◽  
Claire Tourny ◽  
Michel Sidney

The purpose of the study was to identify the stroking characteristics such as rate and length used by male swimmers of differing skill and to analyze the variations of velocity, stroke rate, and stroke length during the course of the race. The performance of 442 male subjects including 40 swimmers competing at an international 100-m freestyle event was videotaped and later analyzed to measure velocity, stroke rate, and stroke length on each lap of the race. Stroke length seemed to be the best predictor of swimming velocity. Different levels of performance could be discriminated by the variations of velocity, stroke rate, and especially stroke length throughout the race. Besides higher values for velocity, stroke rate, and stroke length, the best swimmers were characterized by the capacity to maintain these parameters constant throughout the course of the race. Such results could be used by coaches to assess technique and training for certain racing strategies.


Motor Control ◽  
2021 ◽  
pp. 1-12
Author(s):  
Karini Borges dos Santos ◽  
Paulo Cesar Barauce Bento ◽  
Carl Payton ◽  
André Luiz Felix Rodacki

This study described the kinematic variables of disabled swimmers’ performance and correlated them with their functional classification. Twenty-one impaired swimmers (S5–S10) performed 50-m maximum front-crawl swimming while being recorded by four underwater cameras. Swimming velocity, stroke rate, stroke length, intracycle velocity variation, stroke dimensions, hand velocity, and coordination index were analyzed. Kendall rank was used to correlate stroke parameters and functional classification with p < .05. Swimming velocity, stroke length, and submerged phase were positively correlated with the para swimmers functional classification (.61, .50, and .41; p < .05, respectively), while stroke rate, velocity hand for each phase, coordination index, and intracyclic velocity variation were not (τ between −.11 and .45; p > .05). Thus, some objective kinematic variables of the impaired swimmers help to support current classification. Improving hand velocity seems to be a crucial point to be improved among disabled swimmers.


Author(s):  
Sofiene Amara ◽  
Tiago M. Barbosa ◽  
Yassine Negra ◽  
Raouf Hammami ◽  
Riadh Khalifa ◽  
...  

This study aimed to examine the effect of 9 weeks of concurrent resistance training (CRT) between resistance on dry land (bench press (BP) and medicine ball throw) and resistance in water (water parachute and hand paddles) on muscle strength, sprint swimming performance and kinematic variables compared by the usual training (standard in-water training). Twenty-two male competitive swimmers participated in this study and were randomly allocated to two groups. The CRT group (CRTG, age = 16.5 ± 0.30 years) performed a CRT program, and the control group (CG, age = 16.1 ± 0.32 years) completed their usual training. The independent variables were measured pre- and post-intervention. The findings showed that the one-repetition maximum bench press (1RM BP) was improved only after a CRT program (d = 2.18; +12.11 ± 1.79%). Moreover, all sprint swimming performances were optimized in the CRT group (d = 1.3 to 2.61; −4.22 ± 0.18% to −7.13 ± 0.23%). In addition, the findings revealed an increase in velocity and stroke rate (d = 1.67, d = 2.24; 9.36 ± 2.55%, 13.51 ± 4.22%, respectively) after the CRT program. The CRT program improved the muscle strength, which, in turn, improved the stroke rate, with no change in the stroke length. Then, the improved stroke rate increased the swimming velocity. Ultimately, a faster velocity leads to better swim performances.


Sign in / Sign up

Export Citation Format

Share Document